IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v7y2024i3d10.1007_s42001-024-00323-1.html
   My bibliography  Save this article

A tale of four cities: Exploring security through environmental characteristics of CCTV equipment placement

Author

Listed:
  • Dmitriy Serebrennikov

    (European University at Saint-Petersburg
    Maqsut Narikbayev University)

  • Dmitriy Skougarevskiy

    (European University at Saint-Petersburg)

Abstract

Surveillance systems in modern cities are often regarded as the great state panopticon of omnipresent cameras. Drawing on institutional sociology and organizational studies, this article explores urban security through the lens of security projects—strategies or infrastructures which individuals or groups employ to enhance security. Here we challenge the surveillance-centric view by empirically analyzing the environmental conditions of CCTV equipment in four European capitals: Moscow, Paris, Brussels, and Edinburgh, with a focus on understanding their distinct city security projects. We adopt a species distribution modeling approach, treating the cameras as occupying their own “environmental niche” within the urban landscape. We gather locations of CCTV equipment installed in public places by city officials and train a machine learner (CatBoost) to predict camera presence given the urban morphology. The results are interpreted using Interpretable Machine Learning methods (SHapley Additive exPlanations or SHAP) to account for complex and non-linear relationships between types of places. Moscow’s approach features centralized cameras near symbolic landmarks, while Paris and Brussels prioritize network-oriented logic with less emphasis on symbolic spaces. Moreover, certain areas in Brussels fall outside the urban security jurisdiction. Our results offer novel insights into security and urban policy dynamics, contributing to social security studies, sociological institutionalism, and urban policy literature.

Suggested Citation

  • Dmitriy Serebrennikov & Dmitriy Skougarevskiy, 2024. "A tale of four cities: Exploring security through environmental characteristics of CCTV equipment placement," Journal of Computational Social Science, Springer, vol. 7(3), pages 2735-2766, December.
  • Handle: RePEc:spr:jcsosc:v:7:y:2024:i:3:d:10.1007_s42001-024-00323-1
    DOI: 10.1007/s42001-024-00323-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-024-00323-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-024-00323-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    2. Liming Zhang & Dieter Pfoser, 2019. "Using OpenStreetMap point-of-interest data to model urban change—A feasibility study," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-34, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    2. Alberti, Federica & Mantilla, César, 2020. "Provision of noxious facilities using a market-like mechanism: A simple implementation in the lab," Working papers 35, Red Investigadores de Economía.
    3. Patrick Ballantyne & Cillian Berragan, 2024. "Overture Point of Interest data for the United Kingdom: A comprehensive, queryable open data product, validated against Geolytix supermarket data," Environment and Planning B, , vol. 51(8), pages 1974-1980, October.
    4. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    5. Sandro Radovanovic & Boris Delibasic & Milija Suknovic & Dajana Matovic, 2019. "Where will the next ski injury occur? A system for visual and predictive analytics of ski injuries," Operational Research, Springer, vol. 19(4), pages 973-992, December.
    6. Shiqin Liu & Carl Higgs & Jonathan Arundel & Geoff Boeing & Nicholas Cerdera & David Moctezuma & Ester Cerin & Deepti Adlakha & Melanie Lowe & Billie Giles-Corti, 2021. "A Generalized Framework for Measuring Pedestrian Accessibility around the World Using Open Data," Papers 2105.08814, arXiv.org.
    7. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    8. Reutzel, Fabian, 2024. "The grass is always greener on the other side: (Unfair) inequality and support for democracy," European Journal of Political Economy, Elsevier, vol. 85(C).
    9. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    10. Zhang, Guike & Gao, Zengan & Dong, June & Mei, Dexiang, 2023. "Machine learning approaches for constructing the national anti-money laundering index," Finance Research Letters, Elsevier, vol. 52(C).
    11. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    12. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    14. Hautsch, Nikolaus & Okhrin, Ostap & Ristig, Alexander, 2014. "Efficient iterative maximum likelihood estimation of high-parameterized time series models," SFB 649 Discussion Papers 2014-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    16. repec:hum:wpaper:sfb649dp2014-010 is not listed on IDEAS
    17. Hettihewa, Samanthala & Saha, Shrabani & Zhang, Hanxiong, 2018. "Does an aging population influence stock markets? Evidence from New Zealand," Economic Modelling, Elsevier, vol. 75(C), pages 142-158.
    18. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    19. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    20. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    21. Alice Barreca, 2022. "Architectural Quality and the Housing Market: Values of the Late Twentieth Century Built Heritage," Sustainability, MDPI, vol. 14(5), pages 1-24, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:7:y:2024:i:3:d:10.1007_s42001-024-00323-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.