IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v2y2019i2d10.1007_s42001-019-00038-8.html
   My bibliography  Save this article

Reflections on study abroad: a computational linguistics approach

Author

Listed:
  • Peter Grajzl

    (Washington and Lee University
    CESifo)

  • Cindy Irby

    (Center for International Education, Washington and Lee University)

Abstract

Study abroad and the associated sociocultural experience has been a subject of substantial interest to social science scholars and university administrators. Shedding novel light on the phenomenon, we draw on a corpus of student-authored reflective essays and apply machine learning methods for analysis of text-as-data to examine the features and the determinants of salient themes emphasized by students in their study abroad reflections. Our analysis identifies 18 different topics spanning the domains of distinctly cultural cognition, interaction with people, physical environment, and personal change. Specifics of the experience such as duration and location, timing of reflections, and observable student characteristics including gender, major, academic performance, extracurricular involvement, and socioeconomic status are all important determinants of student’s reflections. Different factors, however, matter differently with respect to students’ emphases on particular topics, a finding indicative of the complex nature of the study abroad experience.

Suggested Citation

  • Peter Grajzl & Cindy Irby, 2019. "Reflections on study abroad: a computational linguistics approach," Journal of Computational Social Science, Springer, vol. 2(2), pages 151-181, July.
  • Handle: RePEc:spr:jcsosc:v:2:y:2019:i:2:d:10.1007_s42001-019-00038-8
    DOI: 10.1007/s42001-019-00038-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-019-00038-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-019-00038-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Hansen & Michael McMahon, 2016. "Shocking Language: Understanding the Macroeconomic Effects of Central Bank Communication," NBER Chapters, in: NBER International Seminar on Macroeconomics 2015, National Bureau of Economic Research, Inc.
    2. Margaret E. Roberts & Brandon M. Stewart & Edoardo M. Airoldi, 2016. "A Model of Text for Experimentation in the Social Sciences," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 988-1003, July.
    3. Margaret E. Roberts & Brandon M. Stewart & Dustin Tingley & Christopher Lucas & Jetson Leder‐Luis & Shana Kushner Gadarian & Bethany Albertson & David G. Rand, 2014. "Structural Topic Models for Open‐Ended Survey Responses," American Journal of Political Science, John Wiley & Sons, vol. 58(4), pages 1064-1082, October.
    4. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    5. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    6. Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
    7. Lucas, Christopher & Nielsen, Richard A. & Roberts, Margaret E. & Stewart, Brandon M. & Storer, Alex & Tingley, Dustin, 2015. "Computer-Assisted Text Analysis for Comparative Politics," Political Analysis, Cambridge University Press, vol. 23(2), pages 254-277, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grajzl, Peter & Murrell, Peter, 2019. "Toward understanding 17th century English culture: A structural topic model of Francis Bacon's ideas," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 111-135.
    2. Peter Grajzl & Peter Murrell, 2021. "Characterizing a legal–intellectual culture: Bacon, Coke, and seventeenth-century England," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 15(1), pages 43-88, January.
    3. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    4. Ferrara, Federico M. & Masciandaro, Donato & Moschella, Manuela & Romelli, Davide, 2022. "Political voice on monetary policy: Evidence from the parliamentary hearings of the European Central Bank," European Journal of Political Economy, Elsevier, vol. 74(C).
    5. Dehler-Holland, Joris & Okoh, Marvin & Keles, Dogan, 2022. "Assessing technology legitimacy with topic models and sentiment analysis – The case of wind power in Germany," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Ulrich Fritsche & Johannes Puckelwald, 2018. "Deciphering Professional Forecasters’ Stories - Analyzing a Corpus of Textual Predictions for the German Economy," Macroeconomics and Finance Series 201804, University of Hamburg, Department of Socioeconomics.
    7. Lino Wehrheim, 2019. "Economic history goes digital: topic modeling the Journal of Economic History," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 13(1), pages 83-125, January.
    8. Szymon Sacher & Laura Battaglia & Stephen Hansen, 2021. "Hamiltonian Monte Carlo for Regression with High-Dimensional Categorical Data," Papers 2107.08112, arXiv.org, revised Feb 2024.
    9. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    10. Marcel Fratzscher & Tobias Heidland & Lukas Menkhoff & Lucio Sarno & Maik Schmeling, 2023. "Foreign Exchange Intervention: A New Database," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(4), pages 852-884, December.
    11. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    12. Valérie Mignon & Celso Brunetti & Marc Joëts, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," EconomiX Working Papers 2023-24, University of Paris Nanterre, EconomiX.
    13. Leonardo N. Ferreira, 2021. "Forecasting with VAR-teXt and DFM-teXt Models:exploring the predictive power of central bank communication," Working Papers Series 559, Central Bank of Brazil, Research Department.
    14. Camilla Salvatore & Silvia Biffignandi & Annamaria Bianchi, 2022. "Corporate Social Responsibility Activities Through Twitter: From Topic Model Analysis to Indexes Measuring Communication Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1217-1248, December.
    15. Seraphine F. Maerz & Carsten Q. Schneider, 2020. "Comparing public communication in democracies and autocracies: automated text analyses of speeches by heads of government," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 517-545, April.
    16. Joaquin Iglesias & Alvaro Ortiz & Tomasa Rodrigo, 2017. "How do the EM Central Bank talk? A Big Data approach to the Central Bank of Turkey," Working Papers 17/24, BBVA Bank, Economic Research Department.
    17. Dybowski, T. Philipp & Kempa, Bernd, 2020. "The European Central Bank’s monetary pillar after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 121(C).
    18. Candelon, Bertrand & Joëts, Marc & Mignon, Valérie, 2024. "What makes econometric ideas popular: The role of connectivity," Research Policy, Elsevier, vol. 53(7).
    19. Edward Kerby & Alexander Moradi & Hanjo Odendaal, 2022. "African time travellers: what can we learn from 500 years of written accounts?," Oxford Economic and Social History Working Papers _201, University of Oxford, Department of Economics.
    20. Caroline E Nowacki & Ashby Monk & Bertrand Decoster, 2021. "Who do sovereign wealth funds say they are? Using structural topic modeling to delineate variegated capitalism in their official reports," Environment and Planning A, , vol. 53(4), pages 828-857, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:2:y:2019:i:2:d:10.1007_s42001-019-00038-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.