IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v36y2018i1d10.1007_s10878-018-0295-5.html
   My bibliography  Save this article

A two-phase optimization method for a multiobjective vehicle relocation problem in electric carsharing systems

Author

Listed:
  • Maurizio Bruglieri

    (Politecnico di Milano)

  • Ferdinando Pezzella

    (Università Politecnica delle Marche)

  • Ornella Pisacane

    (Università Politecnica delle Marche)

Abstract

The paper focuses on one-way electric carsharing systems, where the fleet of cars is made up of Electric Vehicles (EVs) and the users can pick-up the EV at a station and return it to a different one. Such systems require efficient vehicle relocation for constantly balancing the availability of EVs among stations. In this work, the EVs are relocated by workers, and the issue of finding a trade-off among the customers’ satisfaction, the workers’ workload balance and the carsharing provider’s objective is addressed. This leads to a three-objective optimization problem for which a two-phase solution approach is proposed. In the first phase, feasible routes and schedules for relocating EVs are generated by different randomized search heuristics; in the second phase, non-dominated solutions are found through epsilon-constraint programming. Computational results are performed on benchmark instances and new large size instances based on the city of Milan.

Suggested Citation

  • Maurizio Bruglieri & Ferdinando Pezzella & Ornella Pisacane, 2018. "A two-phase optimization method for a multiobjective vehicle relocation problem in electric carsharing systems," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 162-193, July.
  • Handle: RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-018-0295-5
    DOI: 10.1007/s10878-018-0295-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-018-0295-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-018-0295-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert Dawid & Karl F. Doerner & Gustav Feichtinger & Peter M. Kort & Andrea Seidl (ed.), 2016. "Dynamic Perspectives on Managerial Decision Making," Dynamic Modeling and Econometrics in Economics and Finance, Springer, number 978-3-319-39120-5, July-Dece.
    2. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    3. Georg Brandstätter & Claudio Gambella & Markus Leitner & Enrico Malaguti & Filippo Masini & Jakob Puchinger & Mario Ruthmair & Daniele Vigo, 2016. "Overview of Optimization Problems in Electric Car-Sharing System Design and Management," Dynamic Modeling and Econometrics in Economics and Finance, in: Herbert Dawid & Karl F. Doerner & Gustav Feichtinger & Peter M. Kort & Andrea Seidl (ed.), Dynamic Perspectives on Managerial Decision Making, pages 441-471, Springer.
    4. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    5. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2017. "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 214-237.
    7. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    8. Mehdi Nourinejad & Matthew Roorda, 2015. "Carsharing operations policies: a comparison between one-way and two-way systems," Transportation, Springer, vol. 42(3), pages 497-518, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    2. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Carrese, Stefano & D'Andreagiovanni, Fabio & Giacchetti, Tommaso & Nardin, Antonella & Zamberlan, Leonardo, 2021. "An optimization model and genetic-based matheuristic for parking slot rent optimization to carsharing," Research in Transportation Economics, Elsevier, vol. 85(C).
    4. Qin, Hu & Su, E. & Wang, Yilun & Li, Jiliu, 2022. "Branch-and-price-and-cut for the electric vehicle relocation problem in one-way carsharing systems," Omega, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    2. Çalık, Hatice & Fortz, Bernard, 2019. "A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 121-150.
    3. Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
    4. Zhao, Meng & Li, Xiaopeng & Yin, Jiateng & Cui, Jianxun & Yang, Lixing & An, Shi, 2018. "An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: Model formulation and Lagrangian relaxation-based solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 542-572.
    5. Qin, Hu & Su, E. & Wang, Yilun & Li, Jiliu, 2022. "Branch-and-price-and-cut for the electric vehicle relocation problem in one-way carsharing systems," Omega, Elsevier, vol. 109(C).
    6. Bekli, Seyma & Boyacı, Burak & Zografos, Konstantinos G., 2021. "Enhancing the performance of one-way electric carsharing systems through the optimum deployment of fast chargers," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 118-139.
    7. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    8. Cui, Shaohua & Ma, Xiaolei & Zhang, Mingheng & Yu, Bin & Yao, Baozhen, 2022. "The parallel mobile charging service for free-floating shared electric vehicle clusters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    9. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    10. Yang, Jie & Hu, Lu & Jiang, Yangsheng, 2022. "An overnight relocation problem for one-way carsharing systems considering employment planning, return restrictions, and ride sharing of temporary workers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    12. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    13. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    14. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    15. Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. Grazia Speranza, M., 2018. "Trends in transportation and logistics," European Journal of Operational Research, Elsevier, vol. 264(3), pages 830-836.
    17. Bansal, Vishal & Kumar, Deepak Prakash & Roy, Debjit & Subramanian, Shankar C., 2022. "Performance evaluation and optimization of design parameters for electric vehicle-sharing platforms by considering vehicle dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    18. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    19. Long He & Guangrui Ma & Wei Qi & Xin Wang, 2021. "Charging an Electric Vehicle-Sharing Fleet," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 471-487, March.
    20. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-018-0295-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.