IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v1y1997i3d10.1023_a1009780410798.html
   My bibliography  Save this article

Optimization Model and Algorithm for Crew Management During Airline Irregular Operations

Author

Listed:
  • Guo Wei

    (University of Texas at Austin)

  • Gang Yu

    (University of Texas at Austin)

  • Mark Song

    (CALEB Technologies Corp.)

Abstract

Airline irregular operations have long been a realm where human experience and judgement are the most important tools to utilize. Crew management during irregular operations is usually the bottleneck of the whole system-recovering process due to complicated crew schedules and restrictive crew legalities as well as the size and scope of the hub-and-spoke networks adopted by major carriers. A system-wide multi-commodity integer network flow model and a heuristic search algorithm for the above purpose are presented and discussed in this paper. The computational experiences show that the algorithm is efficient enough to solve problems of realistic size and also has the flexibility to accommodate practical business requirements.

Suggested Citation

  • Guo Wei & Gang Yu & Mark Song, 1997. "Optimization Model and Algorithm for Crew Management During Airline Irregular Operations," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 305-321, October.
  • Handle: RePEc:spr:jcomop:v:1:y:1997:i:3:d:10.1023_a:1009780410798
    DOI: 10.1023/A:1009780410798
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1009780410798
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1009780410798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ira Gershkoff, 1989. "Optimizing Flight Crew Schedules," Interfaces, INFORMS, vol. 19(4), pages 29-43, August.
    2. Ahmad I. Z. Jarrah & Gang Yu & Nirup Krishnamurthy & Ananda Rakshit, 1993. "A Decision Support Framework for Airline Flight Cancellations and Delays," Transportation Science, INFORMS, vol. 27(3), pages 266-280, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    2. Nissen, Rüdiger & Haase, Knut, 2004. "Duty-period-based network model for airline crew rescheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 581, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. Mirela Stojkovi'{c} & François Soumis, 2001. "An Optimization Model for the Simultaneous Operational Flight and Pilot Scheduling Problem," Management Science, INFORMS, vol. 47(9), pages 1290-1305, September.
    4. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    5. Gang Yu & Michael Argüello & Gao Song & Sandra M. McCowan & Anna White, 2003. "A New Era for Crew Recovery at Continental Airlines," Interfaces, INFORMS, vol. 33(1), pages 5-22, February.
    6. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    7. Ying Liu & Xiuqing Yang & Yong Xiang & Yi Chen & Gang Mao & Xinzhi Zhou, 2022. "Allocation and optimization of shared self-service check-in system based on integer programming model," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 532-556, August.
    8. Vaaben, Bo & Larsen, Jesper, 2015. "Mitigation of airspace congestion impact on airline networks," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 54-65.
    9. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    10. Medard, Claude P. & Sawhney, Nidhi, 2007. "Airline crew scheduling from planning to operations," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1013-1027, December.
    11. Federico Malucelli & Emanuele Tresoldi, 2019. "Delay and disruption management in local public transportation via real-time vehicle and crew re-scheduling: a case study," Public Transport, Springer, vol. 11(1), pages 1-25, June.
    12. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    13. Chang, Shaw-Ching, 2012. "A duty based approach in solving the aircrew recovery problem," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 16-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    2. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    3. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    4. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    5. Sriram, Chellappan & Haghani, Ali, 2003. "An optimization model for aircraft maintenance scheduling and re-assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 29-48, January.
    6. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    7. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    8. Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
    9. Michael J. Brusco & Larry W. Jacobs, 2000. "Optimal Models for Meal-Break and Start-Time Flexibility in Continuous Tour Scheduling," Management Science, INFORMS, vol. 46(12), pages 1630-1641, December.
    10. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    11. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    12. Andrew M. Churchill & David J. Lovell & Avijit Mukherjee & Michael O. Ball, 2013. "Determining the Number of Airport Arrival Slots," Transportation Science, INFORMS, vol. 47(4), pages 526-541, November.
    13. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    14. AlKheder, Sharaf, 2021. "Passengers intentions towards self-services check-in, Kuwait airport as a case study," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    15. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    16. Yan, Shangyao & Chang, Jei-Chi, 2002. "Airline cockpit crew scheduling," European Journal of Operational Research, Elsevier, vol. 136(3), pages 501-511, February.
    17. Beasley, J. E. & Cao, B., 1996. "A tree search algorithm for the crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 94(3), pages 517-526, November.
    18. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    19. Desaulniers, G. & Desrosiers, J. & Dumas, Y. & Marc, S. & Rioux, B. & Solomon, M. M. & Soumis, F., 1997. "Crew pairing at Air France," European Journal of Operational Research, Elsevier, vol. 97(2), pages 245-259, March.
    20. Amy Mainville Cohn & Cynthia Barnhart, 2003. "Improving Crew Scheduling by Incorporating Key Maintenance Routing Decisions," Operations Research, INFORMS, vol. 51(3), pages 387-396, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:1:y:1997:i:3:d:10.1023_a:1009780410798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.