IDEAS home Printed from https://ideas.repec.org/a/spr/jbuscr/v19y2023i3d10.1007_s41549-023-00089-x.html
   My bibliography  Save this article

A Moving Linear Model Approach for Extracting Cyclical Variation from Time Series Data

Author

Listed:
  • Koki Kyo

    (Gifu Shotoku Gakuen University)

  • Genshiro Kitagawa

    (University of Tokyo)

Abstract

We propose a methodology for decomposing time series data into multiple components, including constrained components and remaining components containing cyclical variation. Our approach employs a moving linear model and utilizes state space representation, allowing for estimation of the components using the Kalman filter. The key parameter in our model is the width of the time interval, which can be estimated using the maximum likelihood method. Notably, our approach only requires a local linear model for the constrained component, while a strict model is not necessary for the remaining component. By applying our approach iteratively, we can decompose a time series into multiple components. Furthermore, we introduce a procedure to transform the decomposed components into uncorrelated components using principal component analysis. The proposed methodology demonstrates its applicability in analyzing business cycles. To illustrate its performance, we apply it to analyze two sets of monthly time series data from Japan.

Suggested Citation

  • Koki Kyo & Genshiro Kitagawa, 2023. "A Moving Linear Model Approach for Extracting Cyclical Variation from Time Series Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(3), pages 373-397, November.
  • Handle: RePEc:spr:jbuscr:v:19:y:2023:i:3:d:10.1007_s41549-023-00089-x
    DOI: 10.1007/s41549-023-00089-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41549-023-00089-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41549-023-00089-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    2. Zarnowitz, Victor & Ozyildirim, Ataman, 2006. "Time series decomposition and measurement of business cycles, trends and growth cycles," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1717-1739, October.
    3. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    4. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    5. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    6. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    7. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
    8. Koki Kyo & Hideo Noda & Genshiro Kitagawa, 2022. "Co-movement of Cyclical Components Approach to Construct a Coincident Index of Business Cycles," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 101-127, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    2. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    3. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    4. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    5. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    6. Blonigen, Bruce A. & Piger, Jeremy & Sly, Nicholas, 2014. "Comovement in GDP trends and cycles among trading partners," Journal of International Economics, Elsevier, vol. 94(2), pages 239-247.
    7. Marlon Fritz, 2019. "Data-Driven Local Polynomial Trend Estimation for Economic Data - Steady State Adjusting Trends," Working Papers Dissertations 49, Paderborn University, Faculty of Business Administration and Economics.
    8. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    9. Nicholas Sly & Caroline Weber, 2013. "International Fiscal Policy Coordination and GDP Comovement," CESifo Working Paper Series 4358, CESifo.
    10. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    11. Fernandes, Mário Correia & Dutra, Tiago Mota & Dias, José Carlos & Teixeira, João C.A., 2023. "Modelling output gaps in the Euro Area with structural breaks: The COVID-19 recession," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1046-1058.
    12. Daisuke Nagakura, 2008. "How Are Shocks to Trend and Cycle Correlated? A Simple Methodology for Unidentified Unobserved Components Models," IMES Discussion Paper Series 08-E-24, Institute for Monetary and Economic Studies, Bank of Japan.
    13. T. Berger, 2008. "Estimating Europe’s Natural Rates from a forward-looking Phillips curve," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/498, Ghent University, Faculty of Economics and Business Administration.
    14. Rodríguez, Gabriel, 2010. "Using A Forward-Looking Phillips Curve to Estimate the Output Gap in Peru," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 6(01-2), pages 1-13, April.
    15. Ángel Guillén & Gabriel Rodríguez, 2014. "Trend-cycle decomposition for Peruvian GDP: application of an alternative method," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 23(1), pages 1-44, December.
    16. Tatsuma Wada & Pierre Perron, 2005. "Trend and Cycles: A New Approach and Explanations of Some Old Puzzles," Computing in Economics and Finance 2005 252, Society for Computational Economics.
    17. Willie Lahari, 2011. "Assessing Business Cycle Synchronisation - Prospects for a Pacific Islands Currency Union," Working Papers 1110, University of Otago, Department of Economics, revised Oct 2011.
    18. Basistha, Arabinda & Nelson, Charles R., 2007. "New measures of the output gap based on the forward-looking new Keynesian Phillips curve," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 498-511, March.
    19. Yves Schueler, 2024. "Filtering economic time series: On the cyclical properties of Hamilton’s regression filter and the Hodrick-Prescott filter," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 54, October.
    20. Biolsi, Christopher, 2023. "Do the Hamilton and Beveridge–Nelson filters provide the same information about output gaps? An empirical comparison for practitioners," Journal of Macroeconomics, Elsevier, vol. 75(C).

    More about this item

    Keywords

    Cyclical variation; Moving linear model approach; Constrained-remaining components decomposition; State-space model; Economic time series;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbuscr:v:19:y:2023:i:3:d:10.1007_s41549-023-00089-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.