IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v93y2023i9d10.1007_s11573-023-01149-5.html
   My bibliography  Save this article

Understanding the determinants of bond excess returns using explainable AI

Author

Listed:
  • Lars Beckmann

    (University of Münster)

  • Jörn Debener

    (University of Münster)

  • Johannes Kriebel

    (University of Münster)

Abstract

Recent empirical evidence indicates that bond excess returns can be predicted using machine learning models. However, although the predictive power of machine learning models is intriguing, they typically lack transparency. This paper introduces the state-of-the-art explainable artificial intelligence technique SHapley Additive exPlanations (SHAP) to open the black box of these models. Our analysis identifies the key determinants that drive the predictions of bond excess returns produced by machine learning models and recognizes how these determinants relate to bond excess returns. This approach facilitates an economic interpretation of the predictions of bond excess returns made by machine learning models and contributes to a thorough understanding of the determinants of bond excess returns, which is critical for the decisions of market participants and the evaluation of economic theories.

Suggested Citation

  • Lars Beckmann & Jörn Debener & Johannes Kriebel, 2023. "Understanding the determinants of bond excess returns using explainable AI," Journal of Business Economics, Springer, vol. 93(9), pages 1553-1590, November.
  • Handle: RePEc:spr:jbecon:v:93:y:2023:i:9:d:10.1007_s11573-023-01149-5
    DOI: 10.1007/s11573-023-01149-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-023-01149-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-023-01149-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ravi Bansal & Ivan Shaliastovich, 2013. "A Long-Run Risks Explanation of Predictability Puzzles in Bond and Currency Markets," The Review of Financial Studies, Society for Financial Studies, vol. 26(1), pages 1-33.
    2. Ilan Cooper, 2009. "Time-Varying Risk Premiums and the Output Gap," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2601-2633, July.
    3. Michael D. Bauer & Glenn D. Rudebusch, 2017. "Resolving the Spanning Puzzle in Macro-Finance Term Structure Models," Review of Finance, European Finance Association, vol. 21(2), pages 511-553.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    5. Sekkel, Rodrigo, 2011. "International evidence on bond risk premia," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 174-181, January.
    6. Laura Coroneo & Domenico Giannone & Michele Modugno, 2016. "Unspanned Macroeconomic Factors in the Yield Curve," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 472-485, July.
    7. John Y. Campbell, 1995. "Some Lessons from the Yield Curve," Journal of Economic Perspectives, American Economic Association, vol. 9(3), pages 129-152, Summer.
    8. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    9. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    10. Piazzesi, Monika & Schneider, Martin & Tuzel, Selale, 2007. "Housing, consumption and asset pricing," Journal of Financial Economics, Elsevier, vol. 83(3), pages 531-569, March.
    11. Scott Joslin & Marcel Priebsch & Kenneth J. Singleton, 2014. "Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks," Journal of Finance, American Finance Association, vol. 69(3), pages 1197-1233, June.
    12. Jonathan H. Wright, 2011. "Term Premia and Inflation Uncertainty: Empirical Evidence from an International Panel Dataset," American Economic Review, American Economic Association, vol. 101(4), pages 1514-1534, June.
    13. Perignon, Christophe & Smith, Daniel R. & Villa, Christophe, 2007. "Why common factors in international bond returns are not so common," Journal of International Money and Finance, Elsevier, vol. 26(2), pages 284-304, March.
    14. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    15. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    16. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(2), pages 645-700.
    17. Barr, David G. & Priestley, Richard, 2004. "Expected returns, risk and the integration of international bond markets," Journal of International Money and Finance, Elsevier, vol. 23(1), pages 71-97, February.
    18. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    19. McCallum, John S, 1975. "The Expected Holding Period Return, Uncertainty and the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 30(2), pages 307-323, May.
    20. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    21. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    22. Wachter, Jessica A., 2006. "A consumption-based model of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 79(2), pages 365-399, February.
    23. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 495-514.
    24. Kessler, Stephan & Scherer, Bernd, 2009. "Varying risk premia in international bond markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1361-1375, August.
    25. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    26. Michael D. Bauer & James D. Hamilton, 2018. "Robust Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 399-448.
    27. Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
    28. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    29. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    30. Christos Ioannidis & Kook Ka, 2021. "Economic Policy Uncertainty and Bond Risk Premia," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(6), pages 1479-1522, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wolfgang Breuer & Andreas Knetsch, 2023. "Recent trends in the digitalization of finance and accounting," Journal of Business Economics, Springer, vol. 93(9), pages 1451-1461, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
    2. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    3. Guo, Bin & Huang, Fuzhe & Li, Kai, 2022. "Time to build and bond risk premia," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    4. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    5. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2021. "Macro risks and the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 141(2), pages 479-504.
    6. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
    7. De Rezende, Rafael B., 2015. "Risks in macroeconomic fundamentals and excess bond returns predictability," Working Paper Series 295, Sveriges Riksbank (Central Bank of Sweden).
    8. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.
    9. Huang, Dashan & Jiang, Fuwei & Li, Kunpeng & Tong, Guoshi & Zhou, Guofu, 2023. "Are bond returns predictable with real-time macro data?," Journal of Econometrics, Elsevier, vol. 237(2).
    10. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    11. Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
    12. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    13. Feng Zhao & Guofu Zhou & Xiaoneng Zhu, 2021. "Unspanned Global Macro Risks in Bond Returns," Management Science, INFORMS, vol. 67(12), pages 7825-7843, December.
    14. Zhang, Han & Fan, Xiaoyun & Guo, Bin & Zhang, Wei, 2019. "Reexamining time-varying bond risk premia in the post-financial crisis era," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    15. Li, Junye & Sarno, Lucio & Zinna, Gabriele, 2024. "Risks and risk premia in the US Treasury market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    16. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    17. Christos Ioannidis & Kook Ka, 2021. "Economic Policy Uncertainty and Bond Risk Premia," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(6), pages 1479-1522, September.
    18. Doshi, Hitesh & Jacobs, Kris & Liu, Rui, 2018. "Macroeconomic determinants of the term structure: Long-run and short-run dynamics," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 99-122.
    19. Michael D. Bauer & Glenn D. Rudebusch, 2017. "Resolving the Spanning Puzzle in Macro-Finance Term Structure Models," Review of Finance, European Finance Association, vol. 21(2), pages 511-553.
    20. Dahlquist, Magnus & Hasseltoft, Henrik, 2013. "International Bond Risk Premia," Journal of International Economics, Elsevier, vol. 90(1), pages 17-32.

    More about this item

    Keywords

    Asset pricing; Bond excess returns; Machine learning; Explainable artificial intelligence;
    All these keywords.

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:93:y:2023:i:9:d:10.1007_s11573-023-01149-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.