IDEAS home Printed from https://ideas.repec.org/a/spr/ijphth/v63y2018i4d10.1007_s00038-017-1041-y.html
   My bibliography  Save this article

Harnessing advances in computer simulation to inform policy and planning to reduce alcohol-related harms

Author

Listed:
  • Jo-An Atkinson

    (Sax Institute
    Sax Institute
    University of Sydney)

  • Dylan Knowles

    (Sax Institute
    Anthrodynamics Simulation Services)

  • John Wiggers

    (Sax Institute
    Hunter New England Population Health
    University of Newcastle)

  • Michael Livingston

    (La Trobe University
    Karolinska Institutet)

  • Robin Room

    (La Trobe University
    Stockholm University)

  • Ante Prodan

    (Sax Institute
    Western Sydney University)

  • Geoff McDonnell

    (Sax Institute
    Sax Institute)

  • Eloise O’Donnell

    (Sax Institute)

  • Sandra Jones

    (Australian Catholic University)

  • Paul S. Haber

    (University of Sydney
    Royal Prince Alfred Hospital)

  • David Muscatello

    (University of NSW)

  • Nadine Ezard

    (University of NSW
    St Vincent’s Hospital)

  • Nghi Phung

    (Drug Health Western Sydney Local Health District
    Westmead Institute of Medical Research)

  • Louise Freebairn

    (Sax Institute
    ACT Health
    University of Notre Dame Australia)

  • Devon Indig

    (Sax Institute
    University of Sydney)

  • Lucie Rychetnik

    (Sax Institute
    University of Notre Dame Australia)

  • Jaithri Ananthapavan

    (Deakin University)

  • Sonia Wutzke

    (Sax Institute
    University of Sydney)

Abstract

Objectives Alcohol misuse is a complex systemic problem. The aim of this study was to explore the feasibility of using a transparent and participatory agent-based modelling approach to develop a robust decision support tool to test alcohol policy scenarios before they are implemented in the real world. Methods A consortium of Australia’s leading alcohol experts was engaged to collaboratively develop an agent-based model of alcohol consumption behaviour and related harms. As a case study, four policy scenarios were examined. Results A 19.5 ± 2.5% reduction in acute alcohol-related harms was estimated with the implementation of a 3 a.m. licensed venue closing time plus 1 a.m. lockout; and a 9 ± 2.6% reduction in incidence was estimated with expansion of treatment services to reach 20% of heavy drinkers. Combining the two scenarios produced a 33.3 ± 2.7% reduction in the incidence of acute alcohol-related harms, suggesting a synergistic effect. Conclusions This study demonstrates the feasibility of participatory development of a contextually relevant computer simulation model of alcohol-related harms and highlights the value of the approach in identifying potential policy responses that best leverage limited resources.

Suggested Citation

  • Jo-An Atkinson & Dylan Knowles & John Wiggers & Michael Livingston & Robin Room & Ante Prodan & Geoff McDonnell & Eloise O’Donnell & Sandra Jones & Paul S. Haber & David Muscatello & Nadine Ezard & Ng, 2018. "Harnessing advances in computer simulation to inform policy and planning to reduce alcohol-related harms," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 537-546, May.
  • Handle: RePEc:spr:ijphth:v:63:y:2018:i:4:d:10.1007_s00038-017-1041-y
    DOI: 10.1007/s00038-017-1041-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00038-017-1041-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00038-017-1041-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben Fitzpatrick & Jason Martinez, 2012. "Agent-Based Modeling of Ecological Niche Theory and Assortative Drinking," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(2), pages 1-4.
    2. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    3. Gorman, D.M. & Mezic, J. & Mezic, I. & Gruenewald, P.J., 2006. "Agent-based modeling of drinking behavior: A preliminary model and potential applications to theory and practice," American Journal of Public Health, American Public Health Association, vol. 96(11), pages 2055-2060.
    4. Nianogo, R.A. & Arah, O.A., 2015. "Agent-based modeling of noncommunicable diseases: A systematic review," American Journal of Public Health, American Public Health Association, vol. 105(3), pages 20-31.
    5. Rockhill, B. & Newman, B. & Weinberg, C., 1998. "Use and misuse of population attributable fractions," American Journal of Public Health, American Public Health Association, vol. 88(1), pages 15-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Funk, Tjede & Sharma, Tarang & Chapman, Evelina & Kuchenmüller, Tanja, 2022. "Translating health information into policy-making: A pragmatic framework," Health Policy, Elsevier, vol. 126(1), pages 16-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    2. Alys McAlpine & Ligia Kiss & Cathy Zimmerman & Zaid Chalabi, 2021. "Agent-based modeling for migration and modern slavery research: a systematic review," Journal of Computational Social Science, Springer, vol. 4(1), pages 243-332, May.
    3. Luís de Sousa & Alberto Rodrigues da Silva, 2015. "Showcasing a Domain Specific Language for Spatial Simulation Scenarios with case studies," ERSA conference papers ersa15p1044, European Regional Science Association.
    4. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    5. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    6. Michael G Baker & Jason Gurney & Jane Oliver & Nicole J Moreland & Deborah A Williamson & Nevil Pierse & Nigel Wilson & Tony R Merriman & Teuila Percival & Colleen Murray & Catherine Jackson & Richard, 2019. "Risk Factors for Acute Rheumatic Fever: Literature Review and Protocol for a Case-Control Study in New Zealand," IJERPH, MDPI, vol. 16(22), pages 1-39, November.
    7. Joshua M. Epstein, 2007. "Agent-Based Computational Models and Generative Social Science," Introductory Chapters, in: Generative Social Science Studies in Agent-Based Computational Modeling, Princeton University Press.
    8. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    9. Corsi, Daniel J. & Mejía-Guevara, Iván & Subramanian, S.V., 2016. "Risk factors for chronic undernutrition among children in India: Estimating relative importance, population attributable risk and fractions," Social Science & Medicine, Elsevier, vol. 157(C), pages 165-185.
    10. Eva Deuchert, 2011. "The Virgin HIV Puzzle: Can Misreporting Account for the High Proportion of HIV Cases in Self-reported Virgins?," Journal of African Economies, Centre for the Study of African Economies (CSAE), vol. 20(1), pages 60-89, January.
    11. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    12. Crokidakis, Nuno & Sigaud, Lucas, 2021. "Modeling the evolution of drinking behavior: A Statistical Physics perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    13. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    14. Yanuar Nugroho & Gindo Tampubolon, 2008. "Network Dynamics in the Transition to Democracy: Mapping Global Networks of Contemporary Indonesian Civil Society," Sociological Research Online, , vol. 13(5), pages 144-160, September.
    15. Barr, Jason & Saraceno, Francesco, 2009. "Organization, learning and cooperation," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 39-53, May.
    16. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    17. Nannen, Volker & van den Bergh, Jeroen C. J. M. & Eiben, A. E., 2008. "Impact of Environmental Dynamics on Economic Evolution: Uncertainty, Risk Aversion, and Policy," MPRA Paper 13834, University Library of Munich, Germany.
    18. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    19. G. Fagiolo & G. Dosi & R. Gabriele, 2004. "Matching, Bargaining, And Wage Setting In An Evolutionary Model Of Labor Market And Output Dynamics," World Scientific Book Chapters, in: Roberto Leombruni & Matteo Richiardi (ed.), Industry And Labor Dynamics The Agent-Based Computational Economics Approach, chapter 5, pages 59-89, World Scientific Publishing Co. Pte. Ltd..
    20. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijphth:v:63:y:2018:i:4:d:10.1007_s00038-017-1041-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.