IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v32y2020i2d10.1007_s10696-019-09348-5.html
   My bibliography  Save this article

Designing intervention scheme for vaccine market: a bilevel programming approach

Author

Listed:
  • Ece Zeliha Demirci

    (Eindhoven University of Technology (TU/e))

  • Nesim Kohen Erkip

    (Bilkent University)

Abstract

Public-interest goods benefit consumers and also generate external benefits boosting societal welfare. Despite this characteristic of these goods, their level of consumption or production are generally well below the socially desirable levels without intervention. Motivated by influenza vaccine market, this paper examines the intervention design problem for a public-interest good facing yield uncertainty in production as well as inefficiencies in distribution and allocation. The proposed mechanism considers two intervention tools with the aim of resolving the inefficiencies in the system and allowing the actors to take socially desirable decisions. The first tool is to intervene so that demand level for the good is increased; we call it demand increasing strategy. The second tool aims to support the production, allocation, and distribution by investing in research and development and better planning and enhances the availability; we call this as availability increasing strategy. The intervention design problem is based on stylized demand and availability models that take into account investments made to improve them. The model suggested is experimented by a numerical study to analyze the impact of applying proposed joint mechanism in US influenza vaccine market. The results show that proposed strategy is very effectual in terms of vaccination percentages achieved and budget savings realized beyond the current practices, and the improvement in vaccination percentages is even greater when uncertainty in the system is higher. Besides, the results suggest that as long as the parameter calibration and decision problems are solved consistently, availability can be approximated by its average value when necessary.

Suggested Citation

  • Ece Zeliha Demirci & Nesim Kohen Erkip, 2020. "Designing intervention scheme for vaccine market: a bilevel programming approach," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 453-485, June.
  • Handle: RePEc:spr:flsman:v:32:y:2020:i:2:d:10.1007_s10696-019-09348-5
    DOI: 10.1007/s10696-019-09348-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-019-09348-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-019-09348-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenan Arifoglu & Sarang Deo & Seyed M. R. Iravani, 2012. "Consumption Externality and Yield Uncertainty in the Influenza Vaccine Supply Chain: Interventions in Demand and Supply Sides," Management Science, INFORMS, vol. 58(6), pages 1072-1091, June.
    2. Hamed Mamani & Stephen E. Chick & David Simchi-Levi, 2013. "A Game-Theoretic Model of International Influenza Vaccination Coordination," Management Science, INFORMS, vol. 59(7), pages 1650-1670, July.
    3. Tinglong Dai & Soo-Haeng Cho & Fuqiang Zhang, 2016. "Contracting for On-Time Delivery in the U.S. Influenza Vaccine Supply Chain," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 332-346, July.
    4. Taesik Lee & Hayong Shin, 2016. "Combining syndromic surveillance and ILI data using particle filter for epidemic state estimation," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 233-253, June.
    5. Adida, Elodie & Dey, Debabrata & Mamani, Hamed, 2013. "Operational issues and network effects in vaccine markets," European Journal of Operational Research, Elsevier, vol. 231(2), pages 414-427.
    6. Travis C. Porco & Sally M. Blower, 1998. "Designing HIV Vaccination Policies: Subtypes and Cross-Immunity," Interfaces, INFORMS, vol. 28(3), pages 167-190, June.
    7. Laura J. Kornish & Ralph L. Keeney, 2008. "Repeated Commit-or-Defer Decisions with a Deadline: The Influenza Vaccine Composition," Operations Research, INFORMS, vol. 56(3), pages 527-541, June.
    8. Soo-Haeng Cho, 2010. "The Optimal Composition of Influenza Vaccines Subject to Random Production Yields," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 256-277, November.
    9. Khouja, Moutaz & Robbins, Stephanie S., 2003. "Linking advertising and quantity decisions in the single-period inventory model," International Journal of Production Economics, Elsevier, vol. 86(2), pages 93-105, November.
    10. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer & Mark S. Roberts, 2011. "Optimizing the Societal Benefits of the Annual Influenza Vaccine: A Stochastic Programming Approach," Operations Research, INFORMS, vol. 59(5), pages 1131-1143, October.
    11. Adrian Ramirez-Nafarrate & Joshua D. Lyon & John W. Fowler & Ozgur M. Araz, 2015. "Point-of-Dispensing Location and Capacity Optimization via a Decision Support System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1311-1328, August.
    12. Sheldon Jacobson & Edward Sewell & Ruben Proano, 2006. "An analysis of the pediatric vaccine supply shortage problem," Health Care Management Science, Springer, vol. 9(4), pages 371-389, November.
    13. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    14. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    15. Terry A. Taylor & Wenqiang Xiao, 2014. "Subsidizing the Distribution Channel: Donor Funding to Improve the Availability of Malaria Drugs," Management Science, INFORMS, vol. 60(10), pages 2461-2477, October.
    16. Maher, Stephen J. & Murray, John M., 2016. "The unrooted set covering connected subgraph problem differentiating between HIV envelope sequences," European Journal of Operational Research, Elsevier, vol. 248(2), pages 668-680.
    17. Tanner, Matthew W. & Ntaimo, Lewis, 2010. "IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation," European Journal of Operational Research, Elsevier, vol. 207(1), pages 290-296, November.
    18. Demirci, Ece Zeliha & Erkip, Nesim K., 2017. "Designing an intervention strategy for public-interest goods: The California electric vehicle market case," Omega, Elsevier, vol. 69(C), pages 53-69.
    19. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    20. Candace Arai Yano & Hau L. Lee, 1995. "Lot Sizing with Random Yields: A Review," Operations Research, INFORMS, vol. 43(2), pages 311-334, April.
    21. Russell Halper & S. Raghavan, 2011. "The Mobile Facility Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 413-434, August.
    22. Andrea Matta & Salma Chahed - Jebalia & Evren Sahin, 2014. "Modelling home care organisations from an operations management perspective," Post-Print hal-01737963, HAL.
    23. Stephen E. Chick & Hamed Mamani & David Simchi-Levi, 2008. "Supply Chain Coordination and Influenza Vaccination," Operations Research, INFORMS, vol. 56(6), pages 1493-1506, December.
    24. Lee, Chih-Ming & Hsu, Shu-Lu, 2011. "The effect of advertising on the distribution-free newsboy problem," International Journal of Production Economics, Elsevier, vol. 129(1), pages 217-224, January.
    25. Samii, Amir-Behzad & Pibernik, Richard & Yadav, Prashant & Vereecke, Ann, 2012. "Reservation and allocation policies for influenza vaccines," European Journal of Operational Research, Elsevier, vol. 222(3), pages 495-507.
    26. Sarang Deo & Charles J. Corbett, 2009. "Cournot Competition Under Yield Uncertainty: The Case of the U.S. Influenza Vaccine Market," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 563-576, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2022. "Influenza vaccine supply chain coordination under uncertain supply and demand," European Journal of Operational Research, Elsevier, vol. 297(3), pages 930-948.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    2. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    3. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2022. "Influenza vaccine supply chain coordination under uncertain supply and demand," European Journal of Operational Research, Elsevier, vol. 297(3), pages 930-948.
    4. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    5. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    6. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. Guo, Feiyu & Cao, Erbao, 2021. "Can reference points explain vaccine hesitancy? A new perspective on their formation and updating," Omega, Elsevier, vol. 99(C).
    8. Alexandar Angelus & Özalp Özer, 2022. "On the large‐scale production of a new vaccine," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 3043-3060, July.
    9. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    10. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer, 2018. "Optimal Design of the Seasonal Influenza Vaccine with Manufacturing Autonomy," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 371-387, May.
    11. Xie, Lei & Hou, Pengwen & Han, Hongshuai, 2021. "Implications of government subsidy on the vaccine product R&D when the buyer is risk averse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    12. Westerink-Duijzer, L.E. & Schlicher, L.P.J. & Musegaas, M., 2019. "Fair allocations for cooperation problems in vaccination," Econometric Institute Research Papers EI2019-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Feiyu Guo & Erbao Cao, 2020. "Does Reference Dependence Impact Intervention Mechanisms in Vaccine Markets?," Sustainability, MDPI, vol. 12(16), pages 1-28, August.
    14. Lotty E. Westerink‐Duijzer & Loe P. J. Schlicher & Marieke Musegaas, 2020. "Core Allocations for Cooperation Problems in Vaccination," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1720-1737, July.
    15. Tinglong Dai & Soo-Haeng Cho & Fuqiang Zhang, 2016. "Contracting for On-Time Delivery in the U.S. Influenza Vaccine Supply Chain," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 332-346, July.
    16. Hongmei Sun & Fuminori Toyasaki & Ioanna Falagara Sigala, 2023. "Incentivizing at‐risk production capacity building for COVID‐19 vaccines," Production and Operations Management, Production and Operations Management Society, vol. 32(5), pages 1550-1566, May.
    17. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    18. Arzi Adbi & Chirantan Chatterjee & Matej Drev & Anant Mishra, 2019. "When the Big One Came: A Natural Experiment on Demand Shock and Market Structure in India's Influenza Vaccine Markets," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 810-832, April.
    19. Adida, Elodie & Dey, Debabrata & Mamani, Hamed, 2013. "Operational issues and network effects in vaccine markets," European Journal of Operational Research, Elsevier, vol. 231(2), pages 414-427.
    20. Hamed Mamani & Stephen E. Chick & David Simchi-Levi, 2013. "A Game-Theoretic Model of International Influenza Vaccination Coordination," Management Science, INFORMS, vol. 59(7), pages 1650-1670, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:32:y:2020:i:2:d:10.1007_s10696-019-09348-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.