IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v262y2023ics0925527323001536.html
   My bibliography  Save this article

Efficient and effective large-scale vaccine distribution

Author

Listed:
  • Muckstadt, John A.
  • Klein, Michael G.
  • Jackson, Peter L.
  • Gougelet, Robert M.
  • Hupert, Nathaniel

Abstract

The goal of pandemic response is to provide the greatest protection, for the most people, in the least amount of time. Short response times minimize both current and future health impacts for evolving pathogens that pose global threats. To achieve this goal, efficient and effective systems are needed for distributing and administering vaccines, a cornerstone of pandemic response. COVID-19 vaccines were developed in record time in the U.S. and abroad, but U.S. data shows that they were not distributed efficiently and effectively once available. In an effort to “put vaccines on every corner”, pharmacies and other small venues were a primary means for vaccinating individuals, but daily throughput rates at these locations were very low. This contributed to extended times from manufacture to administration. An important contributing factor to slow administration rates for COVID-19 was vaccine transport and storage box size. In this paper, we establish a general system objective and provide a computationally tractable approach for allocating vaccines in a rolling horizon manner optimally. We illustrate the consequences of both box size and the number and capacity of dispensing locations on achieving system objectives. Using U.S. CDC data, we demonstrate that if vaccines are allocated and distributed according to our proposed strategy, more people would have been vaccinated sooner in the U.S. Many additional days of protection would have occurred, meaning there would have been fewer infections, less demand for healthcare resources, lower overall mortality, and fewer opportunities for the evolution of vaccine-evading strains of the disease.

Suggested Citation

  • Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:proeco:v:262:y:2023:i:c:s0925527323001536
    DOI: 10.1016/j.ijpe.2023.108921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527323001536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2023.108921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robbins, Matthew J. & Lunday, Brian J., 2016. "A bilevel formulation of the pediatric vaccine pricing problem," European Journal of Operational Research, Elsevier, vol. 248(2), pages 634-645.
    2. Kenan Arifoglu & Sarang Deo & Seyed M. R. Iravani, 2012. "Consumption Externality and Yield Uncertainty in the Influenza Vaccine Supply Chain: Interventions in Demand and Supply Sides," Management Science, INFORMS, vol. 58(6), pages 1072-1091, June.
    3. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    4. Tanner, Matthew W. & Ntaimo, Lewis, 2010. "IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation," European Journal of Operational Research, Elsevier, vol. 207(1), pages 290-296, November.
    5. Yang Ye & Qingpeng Zhang & Xuan Wei & Zhidong Cao & Hsiang-Yu Yuan & Daniel Dajun Zeng, 2022. "Equitable access to COVID-19 vaccines makes a life-saving difference to all countries," Nature Human Behaviour, Nature, vol. 6(2), pages 207-216, February.
    6. Burak Kazaz & Scott Webster & Prashant Yadav, 2016. "Interventions for an Artemisinin-based Malaria Medicine Supply Chain," Production and Operations Management, Production and Operations Management Society, vol. 25(9), pages 1576-1600, September.
    7. Alam, Shahriar Tanvir & Ahmed, Sayem & Ali, Syed Mithun & Sarker, Sudipa & Kabir, Golam & ul-Islam, Asif, 2021. "Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals," International Journal of Production Economics, Elsevier, vol. 239(C).
    8. Hannah K. Smalley & Pinar Keskinocak & Faramroze G. Engineer & Larry K. Pickering, 2011. "Universal Tool for Vaccine Scheduling: Applications for Children and Adults," Interfaces, INFORMS, vol. 41(5), pages 436-454, October.
    9. Andrew J. Clark & Herbert Scarf, 2004. "Optimal Policies for a Multi-Echelon Inventory Problem," Management Science, INFORMS, vol. 50(12_supple), pages 1782-1790, December.
    10. Aswin Dhamodharan & Ruben Proano, 2012. "Determining the optimal vaccine vial size in developing countries: a Monte Carlo simulation approach," Health Care Management Science, Springer, vol. 15(3), pages 188-196, September.
    11. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    12. Tinglong Dai & Soo-Haeng Cho & Fuqiang Zhang, 2016. "Contracting for On-Time Delivery in the U.S. Influenza Vaccine Supply Chain," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 332-346, July.
    13. Nathaniel Hupert & Alvin I. Mushlin & Mark A. Callahan, 2002. "Modeling the Public Health Response to Bioterrorism: Using Discrete Event Simulation to Design Antibiotic Distribution Centers," Medical Decision Making, , vol. 22(1_suppl), pages 17-25, September.
    14. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    15. Faramroze G. Engineer & Pınar Keskinocak & Larry K. Pickering, 2009. "OR Practice---Catch-Up Scheduling for Childhood Vaccination," Operations Research, INFORMS, vol. 57(6), pages 1307-1319, December.
    16. Laura J. Kornish & Ralph L. Keeney, 2008. "Repeated Commit-or-Defer Decisions with a Deadline: The Influenza Vaccine Composition," Operations Research, INFORMS, vol. 56(3), pages 527-541, June.
    17. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    18. Joseph T. Wu & Lawrence M. Wein & Alan S. Perelson, 2005. "Optimization of Influenza Vaccine Selection," Operations Research, INFORMS, vol. 53(3), pages 456-476, June.
    19. Soo-Haeng Cho, 2010. "The Optimal Composition of Influenza Vaccines Subject to Random Production Yields," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 256-277, November.
    20. Shane N. Hall & Sheldon H. Jacobson & Edward C. Sewell, 2008. "An Analysis of Pediatric Vaccine Formulary Selection Problems," Operations Research, INFORMS, vol. 56(6), pages 1348-1365, December.
    21. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    22. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    23. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer & Mark S. Roberts, 2011. "Optimizing the Societal Benefits of the Annual Influenza Vaccine: A Stochastic Programming Approach," Operations Research, INFORMS, vol. 59(5), pages 1131-1143, October.
    24. Dastgoshade, Sohaib & Shafiee, Mohammad & Klibi, Walid & Shishebori, Davood, 2022. "Social equity-based distribution networks design for the COVID-19 vaccine," International Journal of Production Economics, Elsevier, vol. 250(C).
    25. Adrian Ramirez-Nafarrate & Joshua D. Lyon & John W. Fowler & Ozgur M. Araz, 2015. "Point-of-Dispensing Location and Capacity Optimization via a Decision Support System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1311-1328, August.
    26. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2020. "Cold chain transportation decision in the vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 283(1), pages 182-195.
    27. Sheldon Jacobson & Edward Sewell & Ruben Proano, 2006. "An analysis of the pediatric vaccine supply shortage problem," Health Care Management Science, Springer, vol. 9(4), pages 371-389, November.
    28. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    29. Masoumi, Amir H. & Yu, Min & Nagurney, Anna, 2012. "A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 762-780.
    30. John A. Muckstadt & David H. Murray & James A. Rappold & Dwight E. Collins, 2001. "Guidelines for Collaborative Supply Chain System Design and Operation," Information Systems Frontiers, Springer, vol. 3(4), pages 427-453, December.
    31. Saif, Ahmed & Elhedhli, Samir, 2016. "Cold supply chain design with environmental considerations: A simulation-optimization approach," European Journal of Operational Research, Elsevier, vol. 251(1), pages 274-287.
    32. Awi Federgruen & Nan Yang, 2009. "Competition Under Generalized Attraction Models: Applications to Quality Competition Under Yield Uncertainty," Management Science, INFORMS, vol. 55(12), pages 2028-2043, December.
    33. Stephen E. Chick & Hamed Mamani & David Simchi-Levi, 2008. "Supply Chain Coordination and Influenza Vaccination," Operations Research, INFORMS, vol. 56(6), pages 1493-1506, December.
    34. Soo-Haeng Cho & Christopher S. Tang, 2013. "Advance Selling in a Supply Chain Under Uncertain Supply and Demand," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 305-319, May.
    35. Thul, Lawrence & Powell, Warren, 2023. "Stochastic optimization for vaccine and testing kit allocation for the COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 325-338.
    36. Samii, Amir-Behzad & Pibernik, Richard & Yadav, Prashant & Vereecke, Ann, 2012. "Reservation and allocation policies for influenza vaccines," European Journal of Operational Research, Elsevier, vol. 222(3), pages 495-507.
    37. Burcu Balcik & Ecem Yucesoy & Berna Akca & Sirma Karakaya & Asena A. Gevsek & Hossein Baharmand & Fabio Sgarbossa, 2022. "A mathematical model for equitable in-country COVID-19 vaccine allocation," International Journal of Production Research, Taylor & Francis Journals, vol. 60(24), pages 7502-7526, December.
    38. Eva K. Lee & Fan Yuan & Ferdinand H. Pietz & Bernard A. Benecke & Greg Burel, 2015. "Vaccine Prioritization for Effective Pandemic Response," Interfaces, INFORMS, vol. 45(5), pages 425-443, October.
    39. Chung, Sung Hoon & Kwon, Changhyun, 2016. "Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals," International Journal of Production Economics, Elsevier, vol. 179(C), pages 117-129.
    40. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    2. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2022. "Influenza vaccine supply chain coordination under uncertain supply and demand," European Journal of Operational Research, Elsevier, vol. 297(3), pages 930-948.
    4. Ece Zeliha Demirci & Nesim Kohen Erkip, 2020. "Designing intervention scheme for vaccine market: a bilevel programming approach," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 453-485, June.
    5. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    6. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    7. Guo, Feiyu & Cao, Erbao, 2021. "Can reference points explain vaccine hesitancy? A new perspective on their formation and updating," Omega, Elsevier, vol. 99(C).
    8. Alexandar Angelus & Özalp Özer, 2022. "On the large‐scale production of a new vaccine," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 3043-3060, July.
    9. Xie, Lei & Hou, Pengwen & Han, Hongshuai, 2021. "Implications of government subsidy on the vaccine product R&D when the buyer is risk averse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    10. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    11. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    12. Westerink-Duijzer, L.E. & Schlicher, L.P.J. & Musegaas, M., 2019. "Fair allocations for cooperation problems in vaccination," Econometric Institute Research Papers EI2019-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Lotty E. Westerink‐Duijzer & Loe P. J. Schlicher & Marieke Musegaas, 2020. "Core Allocations for Cooperation Problems in Vaccination," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1720-1737, July.
    14. Dastgoshade, Sohaib & Shafiee, Mohammad & Klibi, Walid & Shishebori, Davood, 2022. "Social equity-based distribution networks design for the COVID-19 vaccine," International Journal of Production Economics, Elsevier, vol. 250(C).
    15. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer, 2018. "Optimal Design of the Seasonal Influenza Vaccine with Manufacturing Autonomy," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 371-387, May.
    16. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2020. "Cold chain transportation decision in the vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 283(1), pages 182-195.
    17. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2023. "Design of control strategies to help prevent the spread of COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 219-238.
    18. Ho‐Yin Mak & Tinglong Dai & Christopher S. Tang, 2022. "Managing two‐dose COVID‐19 vaccine rollouts with limited supply: Operations strategies for distributing time‐sensitive resources," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4424-4442, December.
    19. Faghih-Roohi, Shahrzad & Akcay, Alp & Zhang, Yingqian & Shekarian, Ehsan & de Jong, Eelco, 2020. "A group risk assessment approach for the selection of pharmaceutical product shipping lanes," International Journal of Production Economics, Elsevier, vol. 229(C).
    20. Tinglong Dai & Soo-Haeng Cho & Fuqiang Zhang, 2016. "Contracting for On-Time Delivery in the U.S. Influenza Vaccine Supply Chain," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 332-346, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:262:y:2023:i:c:s0925527323001536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.