IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Time-consistent mean-variance portfolio selection in discrete and continuous time

  • Christoph Czichowsky

    ()

Registered author(s):

    It is well known that mean-variance portfolio selection is a time-inconsistent optimal control problem in the sense that it does not satisfy Bellman’s optimality principle and therefore the usual dynamic programming approach fails. We develop a time-consistent formulation of this problem, which is based on a local notion of optimality called local mean-variance efficiency, in a general semimartingale setting. We start in discrete time, where the formulation is straightforward, and then find the natural extension to continuous time. This complements and generalises the formulation by Basak and Chabakauri (2010) and the corresponding example in Björk and Murgoci (2010), where the treatment and the notion of optimality rely on an underlying Markovian framework. We justify the continuous-time formulation by showing that it coincides with the continuous-time limit of the discrete-time formulation. The proof of this convergence is based on a global description of the locally optimal strategy in terms of the structure condition and the Föllmer–Schweizer decomposition of the mean-variance trade-off. As a by-product, this also gives new convergence results for the Föllmer–Schweizer decomposition, i.e., for locally risk-minimising strategies. Copyright Springer-Verlag 2013

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s00780-012-0189-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Finance and Stochastics.

    Volume (Year): 17 (2013)
    Issue (Month): 2 (April)
    Pages: 227-271

    as
    in new window

    Handle: RePEc:spr:finsto:v:17:y:2013:i:2:p:227-271
    Contact details of provider: Web page: http://www.springerlink.com/content/101164/

    Order Information: Web: http://link.springer.de/orders.htm

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Jan Kallsen, 2002. "Derivative pricing based on local utility maximization," Finance and Stochastics, Springer, vol. 6(1), pages 115-140.
    2. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2008. "Portfolio Selection with Monotone Mean-Variance Preferences," Temi di discussione (Economic working papers) 664, Bank of Italy, Economic Research and International Relations Area.
    3. Martin Schweizer & Christophe Stricker & Freddy Delbaen & Pascale Monat & Walter Schachermayer, 1997. "Weighted norm inequalities and hedging in incomplete markets," Finance and Stochastics, Springer, vol. 1(3), pages 181-227.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
    5. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    6. Henry R. Richardson, 1989. "A Minimum Variance Result in Continuous Trading Portfolio Optimization," Management Science, INFORMS, vol. 35(9), pages 1045-1055, September.
    7. Constantinos Kardaras & Eckhard Platen, 2008. "Multiplicative Approximation of Wealth Processes Involving No-Short-Sale Strategies," Research Paper Series 240, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Martin Schweizer & HuyËn Pham & (*), Thorsten RheinlÄnder, 1998. "Mean-variance hedging for continuous processes: New proofs and examples," Finance and Stochastics, Springer, vol. 2(2), pages 173-198.
    9. Marcel Nutz, 2009. "The Bellman equation for power utility maximization with semimartingales," Papers 0912.1883, arXiv.org, revised Mar 2012.
    10. Briand, Philippe & Delyon, Bernard & Mémin, Jean, 2002. "On the robustness of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 229-253, February.
    11. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942, March.
    12. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
    13. Choulli, Tahir & Vandaele, Nele & Vanmaele, Michèle, 2010. "The Föllmer-Schweizer decomposition: Comparison and description," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 853-872, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:17:y:2013:i:2:p:227-271. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.