IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v7y2018i1d10.1007_s13676-017-0105-8.html
   My bibliography  Save this article

Detecting train reroutings with process mining

Author

Listed:
  • Gert Janssenswillen

    (Hasselt University
    Research Foundation Flanders (FWO))

  • Benoît Depaire

    (Hasselt University)

  • Sabine Verboven

    (Infrabel)

Abstract

One of the objectives of railway infrastructure managers is to improve the punctuality of their operations while satisfying safety requirements and coping with limited capacity. To fulfil this objective, capacity planning and monitoring have become an absolute necessity. Railway infrastructure managers possess tremendous amounts of data about the railway operations, which are recorded in so-called train describer systems. In this paper, a set of methods is proposed to guide the analysis of capacity usage based on these data. In particular, train connections are categorized according to the severity of train reroutings as well as the diversity of these reroutings. The applied method is able to highlight areas in the railway network, where trains have a higher tendency to diverge from their allocated route. The method is independent from the underlying infrastructure, and can, therefore, be reused effortlessly on new cases. The analysis provides a starting point to improve the planning of capacity usage and can be used to facilitate the communication between capacity planning at one hand and operations on the other hand. At the same time, it presents an illustration on how process mining can be used for analysis of train describer data.

Suggested Citation

  • Gert Janssenswillen & Benoît Depaire & Sabine Verboven, 2018. "Detecting train reroutings with process mining," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 1-24, March.
  • Handle: RePEc:spr:eurjtl:v:7:y:2018:i:1:d:10.1007_s13676-017-0105-8
    DOI: 10.1007/s13676-017-0105-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-017-0105-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-017-0105-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Higgins & E. Kozan, 1998. "Modeling Train Delays in Urban Networks," Transportation Science, INFORMS, vol. 32(4), pages 346-357, November.
    2. Carey, Malachy & Kwiecinski, Andrzej, 1994. "Stochastic approximation to the effects of headways on knock-on delays of trains," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 251-267, August.
    3. Yuan, Jianxin & Hansen, Ingo A., 2007. "Optimizing capacity utilization of stations by estimating knock-on train delays," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 202-217, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Potoniec, Jedrzej & Sroka, Daniel & Pawlak, Tomasz P., 2022. "Continuous discovery of Causal nets for non-stationary business processes using the Online Miner," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1304-1320.
    2. Zerbino, Pierluigi & Stefanini, Alessandro & Aloini, Davide, 2021. "Process Science in Action: A Literature Review on Process Mining in Business Management," Technological Forecasting and Social Change, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    2. Bernal, Margarita & Welch, Eric W. & Sriraj, P.S., 2016. "The effect of slow zones on ridership: An analysis of the Chicago Transit Authority “El” Blue Line," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 11-21.
    3. Krüger, Niclas A. & Vierth , Inge & Fakhraei Roudsari, Farzad, 2013. "Spatial, temporal and size distribution of freight train delays: evidence from Sweden," Working papers in Transport Economics 2013:8, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    4. Huang, Ping & Guo, Jingwei & Liu, Shu & Corman, Francesco, 2024. "Explainable train delay propagation: A graph attention network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    5. Thomas Spanninger & Beda Büchel & Francesco Corman, 2023. "Train Delay Predictions Using Markov Chains Based on Process Time Deviations and Elastic State Boundaries," Mathematics, MDPI, vol. 11(4), pages 1-23, February.
    6. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    7. Mu, Shi & Dessouky, Maged, 2013. "Efficient dispatching rules on double tracks with heterogeneous train traffic," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 45-64.
    8. Huang, Ping & Wen, Chao & Fu, Liping & Lessan, Javad & Jiang, Chaozhe & Peng, Qiyuan & Xu, Xinyue, 2020. "Modeling train operation as sequences: A study of delay prediction with operation and weather data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Toru Seo & Kentaro Wada & Daisuke Fukuda, 2023. "Fundamental diagram of urban rail transit considering train–passenger interaction," Transportation, Springer, vol. 50(4), pages 1399-1424, August.
    10. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    11. Wei, Dali & Liu, Hongchao & Qin, Yong, 2015. "Modeling cascade dynamics of railway networks under inclement weather," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 95-122.
    12. Meester, Ludolf E. & Muns, Sander, 2007. "Stochastic delay propagation in railway networks and phase-type distributions," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 218-230, February.
    13. Bergström, Anna & Krüger, Niclas A., 2013. "Modeling passenger train delay distributions: evidence and implications," Working papers in Transport Economics 2013:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    14. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    15. Enrique Castillo & Inmaculada Gallego & José Ureña & José Coronado, 2009. "Timetabling optimization of a single railway track line with sensitivity analysis," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-287, December.
    16. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    17. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    18. Harshad Khadilkar, 2017. "Data-Enabled Stochastic Modeling for Evaluating Schedule Robustness of Railway Networks," Transportation Science, INFORMS, vol. 51(4), pages 1161-1176, November.
    19. Franciszek Restel & Łukasz Wolniewicz & Matea Mikulčić, 2021. "Method for Designing Robust and Energy Efficient Railway Schedules," Energies, MDPI, vol. 14(24), pages 1-12, December.
    20. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:7:y:2018:i:1:d:10.1007_s13676-017-0105-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.