IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v184y2024ics1366554524000474.html
   My bibliography  Save this article

Explainable train delay propagation: A graph attention network approach

Author

Listed:
  • Huang, Ping
  • Guo, Jingwei
  • Liu, Shu
  • Corman, Francesco

Abstract

Explaining train delay propagation using influence factors (to find the determinants) is essential for transport planning and train operation management. Due to high interpretability to train operations, graph/network models, e.g., Bayesian networks and alternative graphs, are extensively used in the train delay propagation/prediction problem. In these graph/network models, nodes represent train arrival/departure/passage events, whereas arcs describe train headway/running/dwelling processes. However, previously proposed graph/network models do not have edge weights, making them incapable of apperceiving the diverse influences of factors on train delay propagation/prediction. The train dwelling, running, and headway times vary over time, space, and train services. This potentially makes these factors have diverse strengths on train operations. We innovatively use the Graph Attention Network (GAT) to model the train delay propagation. An attention mechanism is used in the GAT model, allowing the GAT model to have arcs with diverse weights (learned from data). This enables the GAT model to discern the nodes’ diverse influences; thus, with the learned importance coefficients, the model can be distinctly explained by the influencing factors. Further, the model’s accuracy is expected to be improved, because the GAT model (with the attention mechanism) can pay more attention (represented by the learned weights) to the significant factors/nodes. The proposed GAT model was calibrated on operation data from the Dutch railway network. The results show that: (1) the influence factors contribute diversely to the delay propagation, and the train headway is the determinant of train delay propagation; (2) the accuracy of the proposed GAT model is significantly improved (because of the attention mechanism), compared against other state-of-the-art graph/network models. In a word, the proposed GAT method improves the interpretability of delay propagation and the accuracy of delay prediction.

Suggested Citation

  • Huang, Ping & Guo, Jingwei & Liu, Shu & Corman, Francesco, 2024. "Explainable train delay propagation: A graph attention network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:transe:v:184:y:2024:i:c:s1366554524000474
    DOI: 10.1016/j.tre.2024.103457
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524000474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:184:y:2024:i:c:s1366554524000474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.