IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v195y2025ics1366554525000109.html
   My bibliography  Save this article

An interpretable machine learning framework for enhancing road transportation safety

Author

Listed:
  • Abdulrashid, Ismail
  • Chiang, Wen-Chyuan
  • Sheu, Jiuh-Biing
  • Mammadov, Shamkhal

Abstract

This study presents a comprehensive decision-making framework that employs eXplainable Artificial Intelligence (XAI)-based methods to improve proactive road transport safety management, which is critical for global supply chain networks. The framework offers explainable predictions as well as suggestions pertaining to the near-future digitization of safety tools and their usage, customized for road transport safety management. We employed four black-box machine learning-based models—artificial neural network (ANN), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost)—in this setting to enhance our comprehension of the crash-related risk factors that contribute to the severity of traffic accident injuries. Due to their opaqueness and complex inner workings, stakeholders often perceive these models as data-driven black-box approaches, making them incapable of providing an efficient decision-support tool. The recommended decision support incorporates agreement levels for predictions and interpretation across various XAI modeling paradigms. We deploy PFI (Permutation Feature Importance) and FIRM (Feature Importance Ranking Measures) tools to evaluate the extent of agreement in explainability between these various modeling approaches. The recommendations are based on PFI and FIRM values of highly performing models. We execute the framework as an illustration of the concept using a real crash dataset obtained from the NHTSA (National Highway Transportation Safety Administration of the United States) and report end-user feedback for use by transport policymakers.

Suggested Citation

  • Abdulrashid, Ismail & Chiang, Wen-Chyuan & Sheu, Jiuh-Biing & Mammadov, Shamkhal, 2025. "An interpretable machine learning framework for enhancing road transportation safety," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000109
    DOI: 10.1016/j.tre.2025.103969
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525000109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.103969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar Ibrahim Aboulola, 2024. "Improving traffic accident severity prediction using MobileNet transfer learning model and SHAP XAI technique," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-18, April.
    2. Xinlei Mi & Baiming Zou & Fei Zou & Jianhua Hu, 2021. "Permutation-based identification of important biomarkers for complex diseases via machine learning models," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Ismail Abdulrashid & Reza Zanjirani Farahani & Shamkhal Mammadov & Mohamed Khalafalla, 2025. "Transport behavior and government interventions in pandemics: A hybrid explainable machine learning for road safety," Post-Print hal-04765768, HAL.
    4. Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    5. Martínez, Andrés & Schmuck, Claudia & Pereverzyev, Sergiy & Pirker, Clemens & Haltmeier, Markus, 2020. "A machine learning framework for customer purchase prediction in the non-contractual setting," European Journal of Operational Research, Elsevier, vol. 281(3), pages 588-596.
    6. Zhen, Lu & Wu, Jingwen & Chen, Fengli & Wang, Shuaian, 2024. "Traffic emergency vehicle deployment and dispatch under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    7. Luo, Suyuan & Lin, Xudong & Zheng, Zunxin, 2019. "A novel CNN-DDPG based AI-trader: Performance and roles in business operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 68-79.
    8. Rathore, Bhawana & Sengupta, Pooja & Biswas, Baidyanath & Kumar, Ajay, 2024. "Predicting the price of taxicabs using Artificial Intelligence: A hybrid approach based on clustering and ordinal regression models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    9. Abdulrashid, Ismail & Zanjirani Farahani, Reza & Mammadov, Shamkhal & Khalafalla, Mohamed, 2025. "Transport behavior and government interventions in pandemics: A hybrid explainable machine learning for road safety," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    10. Huang, Ping & Guo, Jingwei & Liu, Shu & Corman, Francesco, 2024. "Explainable train delay propagation: A graph attention network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    11. Wang, Junjin & Liu, Jiaguo & Wang, Fan & Yue, Xiaohang, 2021. "Blockchain technology for port logistics capability: Exclusive or sharing," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 347-392.
    12. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    13. De Bock, Koen W. & Coussement, Kristof & Lessmann, Stefan, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 612-630.
    14. Koen W. de Bock & Kristof Coussement & Stefan Lessmann, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," Post-Print hal-02863245, HAL.
    15. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    16. Tian, Xuecheng & Yan, Ran & Liu, Yannick & Wang, Shuaian, 2023. "A smart predict-then-optimize method for targeted and cost-effective maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 32-52.
    17. Kuo, Hsin-Tsz & Choi, Tsan-Ming, 2024. "Metaverse in transportation and logistics operations: An AI-supported digital technological framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    18. Chu, Nana & Ng, Kam K.H. & Liu, Ye & Hon, Kai Kwong & Chan, Pak Wai & Li, Jianbing & Zhang, Xiaoge, 2024. "Assessment of approach separation with probabilistic aircraft wake vortex recognition via deep learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    19. Roni Factor & Gad Yair & David Mahalel, 2010. "Who by Accident? The Social Morphology of Car Accidents," Risk Analysis, John Wiley & Sons, vol. 30(9), pages 1411-1423, September.
    20. Liu, Yulin & Liu, Yi & Hansen, Mark & Pozdnukhov, Alexey & Zhang, Danqing, 2019. "Using machine learning to analyze air traffic management actions: Ground delay program case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 80-95.
    21. Sheng Dong & Afaq Khattak & Irfan Ullah & Jibiao Zhou & Arshad Hussain, 2022. "Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations," IJERPH, MDPI, vol. 19(5), pages 1-23, March.
    22. Abdulrashid, Ismail & Zanjirani Farahani, Reza & Mammadov, Shamkhal & Khalafalla, Mohamed & Chiang, Wen-Chyuan, 2024. "Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    23. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    24. Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
    25. Xu, Haonan & Liu, Jiaguo & Xu, Xiaofeng & Chen, Jihong & Yue, Xiaohang, 2024. "The impact of AI technology adoption on operational decision-making in competitive heterogeneous ports☆," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Abdulaziz & Topuz, Kazim & Moqbel, Murad & Abdulrashid, Ismail, 2024. "What makes accidents severe! explainable analytics framework with parameter optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 425-436.
    2. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    3. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    4. Abdulrashid, Ismail & Zanjirani Farahani, Reza & Mammadov, Shamkhal & Khalafalla, Mohamed & Chiang, Wen-Chyuan, 2024. "Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    5. Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
    6. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    7. Philipp Borchert & Kristof Coussement & Arno de Caigny & Jochen de Weerdt, 2023. "Extending business failure prediction models with textual website content using deep learning," Post-Print hal-03976762, HAL.
    8. Kazim Topuz & Akhilesh Bajaj & Kristof Coussement & Timothy L. Urban, 2025. "Interpretable machine learning and explainable artificial intelligence," Annals of Operations Research, Springer, vol. 347(2), pages 775-782, April.
    9. Maarouf, Abdurahman & Feuerriegel, Stefan & Pröllochs, Nicolas, 2025. "A fused large language model for predicting startup success," European Journal of Operational Research, Elsevier, vol. 322(1), pages 198-214.
    10. Zhang, Xiang & Sun, Haojie & Pei, Xiaoyang & Guan, Linghui & Wang, Zihao, 2024. "Evolution of technology investment and development of robotaxi services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    11. Papík, Mário & Papíková, Lenka, 2025. "The possibilities of using AutoML in bankruptcy prediction: Case of Slovakia," Technological Forecasting and Social Change, Elsevier, vol. 215(C).
    12. Liu, Wanan & Fan, Hong & Xia, Meng, 2023. "Tree-based heterogeneous cascade ensemble model for credit scoring," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1593-1614.
    13. Chao Fu & Dongyue Wang & Wenjun Chang, 2023. "Data-driven analysis of influence between radiologists for diagnosis of breast lesions," Annals of Operations Research, Springer, vol. 328(1), pages 419-449, September.
    14. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
    15. Deng, Shangkun & Luo, Qunfang & Zhu, Yingke & Ning, Hong & Shimada, Tatsuro, 2024. "Financial risk forewarning with an interpretable ensemble learning approach: An empirical analysis based on Chinese listed companies," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).
    16. Liu, Zhenkun & De Bock, Koen W. & Zhang, Lifang, 2025. "Explainable profit-driven hotel booking cancellation prediction based on heterogeneous stacking-based ensemble classification," European Journal of Operational Research, Elsevier, vol. 321(1), pages 284-301.
    17. Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
    18. Xing, Jin & Chi, Guotai & Pan, Ancheng, 2024. "Instance-dependent misclassification cost-sensitive learning for default prediction," Research in International Business and Finance, Elsevier, vol. 69(C).
    19. Vairetti, Carla & Gennaro, Franco & Maldonado, Sebastián, 2024. "Propensity score oversampling and matching for uplift modeling," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1058-1069.
    20. Wang, Junjin & He, Fan & Chen, Mengdi & Liu, Jingling, 2025. "A review of game theory to maritime supply chain: A competitive and cooperative perspective," Transport Policy, Elsevier, vol. 162(C), pages 364-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:195:y:2025:i:c:s1366554525000109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.