IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0130140.html
   My bibliography  Save this article

On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation

Author

Listed:
  • Sebastian Bach
  • Alexander Binder
  • Grégoire Montavon
  • Frederick Klauschen
  • Klaus-Robert Müller
  • Wojciech Samek

Abstract

Understanding and interpreting classification decisions of automated image classification systems is of high value in many applications, as it allows to verify the reasoning of the system and provides additional information to the human expert. Although machine learning methods are solving very successfully a plethora of tasks, they have in most cases the disadvantage of acting as a black box, not providing any information about what made them arrive at a particular decision. This work proposes a general solution to the problem of understanding classification decisions by pixel-wise decomposition of nonlinear classifiers. We introduce a methodology that allows to visualize the contributions of single pixels to predictions for kernel-based classifiers over Bag of Words features and for multilayered neural networks. These pixel contributions can be visualized as heatmaps and are provided to a human expert who can intuitively not only verify the validity of the classification decision, but also focus further analysis on regions of potential interest. We evaluate our method for classifiers trained on PASCAL VOC 2009 images, synthetic image data containing geometric shapes, the MNIST handwritten digits data set and for the pre-trained ImageNet model available as part of the Caffe open source package.

Suggested Citation

  • Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
  • Handle: RePEc:plo:pone00:0130140
    DOI: 10.1371/journal.pone.0130140
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130140&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0130140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Binder & Shinichi Nakajima & Marius Kloft & Christina Müller & Wojciech Samek & Ulf Brefeld & Klaus-Robert Müller & Motoaki Kawanabe, 2012. "Insights from Classifying Visual Concepts with Multiple Kernel Learning," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-16, August.
    2. Nicolas Pinto & David D Cox & James J DiCarlo, 2008. "Why is Real-World Visual Object Recognition Hard?," PLOS Computational Biology, Public Library of Science, vol. 4(1), pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James V. Hansen, 2021. "Coalition Feature Interpretation and Attribution in Algorithmic Trading Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 849-866, October.
    2. Kunal Pattanayak & Vikram Krishnamurthy, 2021. "Rationally Inattentive Utility Maximization for Interpretable Deep Image Classification," Papers 2102.04594, arXiv.org, revised Jul 2021.
    3. Gabriel Ferrettini & Elodie Escriva & Julien Aligon & Jean-Baptiste Excoffier & Chantal Soulé-Dupuy, 2022. "Coalitional Strategies for Efficient Individual Prediction Explanation," Information Systems Frontiers, Springer, vol. 24(1), pages 49-75, February.
    4. Davazdahemami, Behrooz & Kalgotra, Pankush & Zolbanin, Hamed M. & Delen, Dursun, 2023. "A developer-oriented recommender model for the app store: A predictive network analytics approach," Journal of Business Research, Elsevier, vol. 158(C).
    5. Kevin Fauvel & Tao Lin & Véronique Masson & Élisa Fromont & Alexandre Termier, 2021. "XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification," Mathematics, MDPI, vol. 9(23), pages 1-19, December.
    6. Parmar, Janak & Das, Pritikana & Dave, Sanjaykumar M., 2021. "A machine learning approach for modelling parking duration in urban land-use," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    7. Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Shang, Zuogang & Yan, Ruqiang & Chen, Xuefeng, 2023. "Explainability-driven model improvement for SOH estimation of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Lara Marie Demajo & Vince Vella & Alexiei Dingli, 2020. "Explainable AI for Interpretable Credit Scoring," Papers 2012.03749, arXiv.org.
    10. André Steimers & Moritz Schneider, 2022. "Sources of Risk of AI Systems," IJERPH, MDPI, vol. 19(6), pages 1-32, March.
    11. Wei Jie Yeo & Wihan van der Heever & Rui Mao & Erik Cambria & Ranjan Satapathy & Gianmarco Mengaldo, 2023. "A Comprehensive Review on Financial Explainable AI," Papers 2309.11960, arXiv.org.
    12. Minyoung Lee & Joohyoung Jeon & Hongchul Lee, 2022. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1747-1759, August.
    13. Lars Ole Hjelkrem & Petter Eilif de Lange, 2023. "Explaining Deep Learning Models for Credit Scoring with SHAP: A Case Study Using Open Banking Data," JRFM, MDPI, vol. 16(4), pages 1-19, April.
    14. Pelin Ayranci & Phung Lai & Nhathai Phan & Han Hu & Alexander Kolinowski & David Newman & Deijing Dou, 2022. "OnML: an ontology-based approach for interpretable machine learning," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 770-793, August.
    15. Damiano Brigo & Xiaoshan Huang & Andrea Pallavicini & Haitz Saez de Ocariz Borde, 2021. "Interpretability in deep learning for finance: a case study for the Heston model," Papers 2104.09476, arXiv.org.
    16. Jana Gerlach & Paul Hoppe & Sarah Jagels & Luisa Licker & Michael H. Breitner, 2022. "Decision support for efficient XAI services - A morphological analysis, business model archetypes, and a decision tree," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2139-2158, December.
    17. Sherwan Mohammed Najm & Imre Paniti, 2023. "Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 331-367, January.
    18. Yoonjae Noh & Jong-Min Kim & Soongoo Hong & Sangjin Kim, 2023. "Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    19. Mark Gromowski & Michael Siebers & Ute Schmid, 2020. "A process framework for inducing and explaining Datalog theories," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 821-835, December.
    20. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Škrabánek & Alexandra Zahradníková jr., 2019. "Automatic assessment of the cardiomyocyte development stages from confocal microscopy images using deep convolutional networks," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-18, May.
    2. Xiaofu He & Zhiyong Yang & Joe Z Tsien, 2011. "A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-15, May.
    3. Yuri Vankov & Aleksey Rumyantsev & Shamil Ziganshin & Tatyana Politova & Rinat Minyazev & Ayrat Zagretdinov, 2020. "Assessment of the Condition of Pipelines Using Convolutional Neural Networks," Energies, MDPI, vol. 13(3), pages 1-12, February.
    4. Dileep George & Jeff Hawkins, 2009. "Towards a Mathematical Theory of Cortical Micro-circuits," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-26, October.
    5. Qianli Yang & Edgar Walker & R. James Cotton & Andreas S. Tolias & Xaq Pitkow, 2021. "Revealing nonlinear neural decoding by analyzing choices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Pedro Malaca & Luis F. Rocha & D. Gomes & João Silva & Germano Veiga, 2019. "Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 351-361, January.
    7. Hailay Hagos Entahabu & Amare Sewnet Minale & Emiru Birhane, 2023. "Modeling and Predicting Land Use/Land Cover Change Using the Land Change Modeler in the Suluh River Basin, Northern Highlands of Ethiopia," Sustainability, MDPI, vol. 15(10), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0130140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.