IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0309368.html
   My bibliography  Save this article

Few-shot learning for inference in medical imaging with subspace feature representations

Author

Listed:
  • Jiahui Liu
  • Keqiang Fan
  • Xiaohao Cai
  • Mahesan Niranjan

Abstract

Unlike in the field of visual scene recognition, where tremendous advances have taken place due to the availability of very large datasets to train deep neural networks, inference from medical images is often hampered by the fact that only small amounts of data may be available. When working with very small dataset problems, of the order of a few hundred items of data, the power of deep learning may still be exploited by using a pre-trained model as a feature extractor and carrying out classic pattern recognition techniques in this feature space, the so-called few-shot learning problem. However, medical images are highly complex and variable, making it difficult for few-shot learning to fully capture and model these features. To address these issues, we focus on the intrinsic characteristics of the data. We find that, in regimes where the dimension of the feature space is comparable to or even larger than the number of images in the data, dimensionality reduction is a necessity and is often achieved by principal component analysis or singular value decomposition (PCA/SVD). In this paper, noting the inappropriateness of using SVD for this setting we explore two alternatives based on discriminant analysis (DA) and non-negative matrix factorization (NMF). Using 14 different datasets spanning 11 distinct disease types we demonstrate that at low dimensions, discriminant subspaces achieve significant improvements over SVD-based subspaces and the original feature space. We also show that at modest dimensions, NMF is a competitive alternative to SVD in this setting. The implementation of the proposed method is accessible via the following link.

Suggested Citation

  • Jiahui Liu & Keqiang Fan & Xiaohao Cai & Mahesan Niranjan, 2024. "Few-shot learning for inference in medical imaging with subspace feature representations," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-23, November.
  • Handle: RePEc:plo:pone00:0309368
    DOI: 10.1371/journal.pone.0309368
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309368
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0309368&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0309368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel C. Castro & Ian Walker & Ben Glocker, 2020. "Causality matters in medical imaging," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Nicolas Pinto & David D Cox & James J DiCarlo, 2008. "Why is Real-World Visual Object Recognition Hard?," PLOS Computational Biology, Public Library of Science, vol. 4(1), pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sujin Park & Ali Tafti & Galit Shmueli, 2024. "Transporting Causal Effects Across Populations Using Structural Causal Modeling: An Illustration to Work-from-Home Productivity," Information Systems Research, INFORMS, vol. 35(2), pages 686-705, June.
    2. Wei Liao & Joel Voldman, 2024. "Learning and diSentangling patient static information from time-series Electronic hEalth Records (STEER)," PLOS Digital Health, Public Library of Science, vol. 3(10), pages 1-18, October.
    3. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Pavel Škrabánek & Alexandra Zahradníková jr., 2019. "Automatic assessment of the cardiomyocyte development stages from confocal microscopy images using deep convolutional networks," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-18, May.
    5. Xiaofu He & Zhiyong Yang & Joe Z Tsien, 2011. "A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-15, May.
    6. Yuri Vankov & Aleksey Rumyantsev & Shamil Ziganshin & Tatyana Politova & Rinat Minyazev & Ayrat Zagretdinov, 2020. "Assessment of the Condition of Pipelines Using Convolutional Neural Networks," Energies, MDPI, vol. 13(3), pages 1-12, February.
    7. Dileep George & Jeff Hawkins, 2009. "Towards a Mathematical Theory of Cortical Micro-circuits," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-26, October.
    8. Qianli Yang & Edgar Walker & R. James Cotton & Andreas S. Tolias & Xaq Pitkow, 2021. "Revealing nonlinear neural decoding by analyzing choices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
    10. Pedro Malaca & Luis F. Rocha & D. Gomes & João Silva & Germano Veiga, 2019. "Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 351-361, January.
    11. Aly A Valliani & Faris F Gulamali & Young Joon Kwon & Michael L Martini & Chiatse Wang & Douglas Kondziolka & Viola J Chen & Weichung Wang & Anthony B Costa & Eric K Oermann, 2022. "Deploying deep learning models on unseen medical imaging using adversarial domain adaptation," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-17, October.
    12. Mélanie Roschewitz & Galvin Khara & Joe Yearsley & Nisha Sharma & Jonathan J. James & Éva Ambrózay & Adam Heroux & Peter Kecskemethy & Tobias Rijken & Ben Glocker, 2023. "Automatic correction of performance drift under acquisition shift in medical image classification," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Hailay Hagos Entahabu & Amare Sewnet Minale & Emiru Birhane, 2023. "Modeling and Predicting Land Use/Land Cover Change Using the Land Change Modeler in the Suluh River Basin, Northern Highlands of Ethiopia," Sustainability, MDPI, vol. 15(10), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0309368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.