IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v33y2013i3d10.1007_s10669-013-9456-3.html
   My bibliography  Save this article

Analyzing interdependent impacts of resource sustainability

Author

Listed:
  • Zachary Walchuk

    (University of Oklahoma)

  • Kash Barker

    (University of Oklahoma)

Abstract

Quantifying the impact of the shortage of a scarce resource requires a systemic account of the interdependent nature of several industry and infrastructure sectors that rely either directly or indirectly on that resource. An ability to quickly and easily quantify such an impact provides policymakers with a useful measure of the efficacy of discovering, designing, or developing a sustainable alternative. Discussed in this paper is a methodological approach for measuring the broader interdependent impacts of a resource shortage. The dynamic inoperability input–output model (DIIM) is used to illustrate both the economic effects of resource shortages over a period of time and the time-dependent recovery of industry sectors. Extensions to the DIIM are introduced to produce an accessible tool for policymakers and industry decision makers. Case studies using publicly available data illustrate the usefulness of the model for describing local oil production shortages and global rare earth metals supply shortages, highlighting the industries that will need to adapt to changes in resource availability, as well as those industries that will remain relatively unaffected. Above all, the model presented in this paper is an effective means of communicating the impact and importance of resource shortages to assist in the design and development of a sustainable future.

Suggested Citation

  • Zachary Walchuk & Kash Barker, 2013. "Analyzing interdependent impacts of resource sustainability," Environment Systems and Decisions, Springer, vol. 33(3), pages 391-403, September.
  • Handle: RePEc:spr:envsyd:v:33:y:2013:i:3:d:10.1007_s10669-013-9456-3
    DOI: 10.1007/s10669-013-9456-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-013-9456-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-013-9456-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joanna Resurreccion & Joost R. Santos, 2012. "Multiobjective Prioritization Methodology and Decision Support System for Evaluating Inventory Enhancement Strategies for Disrupted Interdependent Sectors," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1673-1692, October.
    2. Joost Santos & Kash Barker & Paul Zelinke, 2008. "Sequential Decision-making in Interdependent Sectors with Multiobjective Inoperability Decision Trees: Application to Biofuel Subsidy Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 29-56.
    3. Pant, Raghav & Barker, Kash & Grant, F. Hank & Landers, Thomas L., 2011. "Interdependent impacts of inoperability at multi-modal transportation container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 722-737, September.
    4. Joost R. Santos & Yacov Y. Haimes, 2004. "Modeling the Demand Reduction Input‐Output (I‐O) Inoperability Due to Terrorism of Interconnected Infrastructures," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1437-1451, December.
    5. George E. Apostolakis & Douglas M. Lemon, 2005. "A Screening Methodology for the Identification and Ranking of Infrastructure Vulnerabilities Due to Terrorism," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 361-376, April.
    6. Eva Andrijcic & Barry Horowitz, 2006. "A Macro‐Economic Framework for Evaluation of Cyber Security Risks Related to Protection of Intellectual Property," Risk Analysis, John Wiley & Sons, vol. 26(4), pages 907-923, August.
    7. V. Rosato & L. Issacharoff & F. Tiriticco & S. Meloni & S. De Porcellinis & R. Setola, 2008. "Modelling interdependent infrastructures using interacting dynamical models," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 63-79.
    8. Jeroen C.J.M. van den Bergh (ed.), 1999. "Handbook of Environmental and Resource Economics," Books, Edward Elgar Publishing, number 801.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Francis D. Benjamin & Aristotle T. Ubando & Luis F. Razon & Raymond R. Tan, 2015. "Analyzing the disruption resilience of bioenergy parks using dynamic inoperability input–output modeling," Environment Systems and Decisions, Springer, vol. 35(3), pages 351-362, September.
    2. Peter A. Beling, 2013. "Multi-scale decision making: challenges in engineering and environmental systems," Environment Systems and Decisions, Springer, vol. 33(3), pages 323-325, September.
    3. Joost R. Santos & Sheree T. Pagsuyoin & Lucia C. Herrera & Raymond R. Tan & Krista D. Yu, 2014. "Analysis of drought risk management strategies using dynamic inoperability input–output modeling and event tree analysis," Environment Systems and Decisions, Springer, vol. 34(4), pages 492-506, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reilly, Allison C. & Baroud, Hiba & Flage, Roger & Gerst, Michael D., 2021. "Sources of uncertainty in interdependent infrastructure and their implications," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    3. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    4. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington, 2020. "Optimal supply chain resilience with consideration of failure propagation and repair logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    5. Joost Santos & Christian Yip & Shital Thekdi & Sheree Pagsuyoin, 2020. "Workforce/Population, Economy, Infrastructure, Geography, Hierarchy, and Time (WEIGHT): Reflections on the Plural Dimensions of Disaster Resilience," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 43-67, January.
    6. Erik Dietzenbacher & Ronald E. Miller, 2015. "Reflections On The Inoperability Input--Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 27(4), pages 478-486, December.
    7. Krista Danielle S. Yu & Raymond R. Tan & Kathleen B. Aviso & Michael Angelo B. Promentilla & Joost R. Santos, 2014. "A Vulnerability Index For Post-Disaster Key Sector Prioritization," Economic Systems Research, Taylor & Francis Journals, vol. 26(1), pages 81-97, March.
    8. Darayi, Mohamad & Barker, Kash & Nicholson, Charles D., 2019. "A multi-industry economic impact perspective on adaptive capacity planning in a freight transportation network," International Journal of Production Economics, Elsevier, vol. 208(C), pages 356-368.
    9. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    10. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    11. Hadi Sasana & Imam Ghozali, 2017. "The Impact of Fossil and Renewable Energy Consumption on the Economic Growth in Brazil, Russia, India, China and South Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 194-200.
    12. Jesper Stage, 2002. "Structural Shifts In Namibian Energy Use: An Input‐Output Approach," South African Journal of Economics, Economic Society of South Africa, vol. 70(6), pages 1103-1125, September.
    13. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    14. Salvati, Luca & Carlucci, Margherita, 2011. "The economic and environmental performances of rural districts in Italy: Are competitiveness and sustainability compatible targets?," Ecological Economics, Elsevier, vol. 70(12), pages 2446-2453.
    15. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    16. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    17. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
    18. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    19. Roberta De Santis, 2012. "Impact of Environmental Regulations on Trade in the Main EU Countries: Conflict or Synergy?," The World Economy, Wiley Blackwell, vol. 35(7), pages 799-815, July.
    20. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:33:y:2013:i:3:d:10.1007_s10669-013-9456-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.