IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i6d10.1007_s10668-023-04398-0.html
   My bibliography  Save this article

The influence of energy transition, and natural resources on carbon emissions in China: an augmented ARDL application

Author

Listed:
  • Azka Amin

    (Hainan University
    Universiti Tenaga Nasional)

  • Nora Yusma bte Mohamed Yusoff

    (Universiti Tenaga Nasional
    Universiti Tenaga Nasional)

  • Sun Peng

    (Hainan University)

  • Cem Işık

    (Anadolu University
    Lebanese American University
    Azerbaijan State university of Economics (UNEC) Clinic of Economics)

  • Assad Ullah

    (Hainan Normal University)

  • Muhammad Akbar

    (Chinese Academy of Science)

Abstract

According to the 26th United Nations Climatic Change Conference (COP26), the deteriorating climate situation has increased the frequency of extreme weather conditions around the globe. An increase in the use of fossil energies, the depletion of natural resources, and the release of carbon dioxide into the atmosphere are the primary contributors to climate change. China has emerged as the global leader in energy consumption and carbon emissions, owing to its remarkable pace of economic development. To being carbon neutral by 2060, it should utilize natural resources wisely and promote energy transition. Renewable energy and the efficient use of natural resources are effective means of facilitating the shift to a low-carbon economy. Critical to China’s transition to a carbon-free economy and sustainable development is a comprehensive analysis of the factors that drive this progress. Within the scope of this discussion, examining the influence of the abundance of natural resources, the energy transition, economic growth, and urbanization on carbon dioxide emissions is important. To end this, an augmented ARDL approach is used on the dataset from 1990 to 2019 for China. The outcomes of this research demonstrate that a rise in urbanization and real income causes environmental degradation, whereas increasing renewable energy diminishes carbon emissions. Moreover, the correlation among natural resource abundance and carbon emissions is positive. We urge Chinese policymakers to secure the sustained utilization of natural resources to decrease reliance on polluting energy sources, and establish stability among ecological and economic policies to reduce environmental destruction and protect the atmosphere for the long term. Furthermore, understanding how China’s energy transition, natural resources, and carbon emissions interact intricately is crucial to our worldwide effort to combat climate change. We may find paths towards a more sustainable and ecologically aware future for China and the globe by comprehending the causal links and recognizing possible synergies between these issues.

Suggested Citation

  • Azka Amin & Nora Yusma bte Mohamed Yusoff & Sun Peng & Cem Işık & Assad Ullah & Muhammad Akbar, 2025. "The influence of energy transition, and natural resources on carbon emissions in China: an augmented ARDL application," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(6), pages 12605-12623, June.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:6:d:10.1007_s10668-023-04398-0
    DOI: 10.1007/s10668-023-04398-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04398-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04398-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Du, Ling & Jiang, Hua & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji & Razzaq, Asif, 2022. "Asymmetric effects of high-tech industry and renewable energy on consumption-based carbon emissions in MINT countries," Renewable Energy, Elsevier, vol. 196(C), pages 1269-1280.
    2. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    3. Khan, Anwar & Chenggang, Yang & Hussain, Jamal & Bano, Sadia & Nawaz, AAmir, 2020. "Natural resources, tourism development, and energy-growth-CO2 emission nexus: A simultaneity modeling analysis of BRI countries," Resources Policy, Elsevier, vol. 68(C).
    4. Zhifu Mi & Jiali Zheng & Jing Meng & Jiamin Ou & Klaus Hubacek & Zhu Liu & D’Maris Coffman & Nicholas Stern & Sai Liang & Yi-Ming Wei, 2020. "Economic development and converging household carbon footprints in China," Nature Sustainability, Nature, vol. 3(7), pages 529-537, July.
    5. Dong, Kangyin & Sun, Renjin & Hochman, Gal, 2017. "Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries," Energy, Elsevier, vol. 141(C), pages 1466-1478.
    6. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    7. Bhattacharya, Mita & Awaworyi Churchill, Sefa & Paramati, Sudharshan Reddy, 2017. "The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions," Renewable Energy, Elsevier, vol. 111(C), pages 157-167.
    8. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    9. Najabat Ali & Khamphe Phoungthong & Kuaanan Techato & Waheed Ali & Shah Abbas & Joshuva Arockia Dhanraj & Anwar Khan, 2022. "FDI, Green Innovation and Environmental Quality Nexus: New Insights from BRICS Economies," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    10. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    11. Robert McNown & Chung Yan Sam & Soo Khoon Goh, 2018. "Bootstrapping the autoregressive distributed lag test for cointegration," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1509-1521, March.
    12. Soo Khoon Goh & Joe Yee Yong & Cheng Chan Lau & Tuck Cheong Tang, 2017. "Bootstrap ARDL on energy-growth relationship for 22 OECD countries," Applied Economics Letters, Taylor & Francis Journals, vol. 24(20), pages 1464-1467, November.
    13. Shan, Shan & Ahmad, Munir & Tan, Zhixiong & Adebayo, Tomiwa Sunday & Man Li, Rita Yi & Kirikkaleli, Dervis, 2021. "The role of energy prices and non-linear fiscal decentralization in limiting carbon emissions: Tracking environmental sustainability," Energy, Elsevier, vol. 234(C).
    14. Belaïd, Fateh & Zrelli, Maha Harbaoui, 2019. "Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries," Energy Policy, Elsevier, vol. 133(C).
    15. Valadkhani, Abbas & Nguyen, Jeremy & Bowden, Mark, 2019. "Pathways to reduce CO2 emissions as countries proceed through stages of economic development," Energy Policy, Elsevier, vol. 129(C), pages 268-278.
    16. Sam, Chung Yan & McNown, Robert & Goh, Soo Khoon, 2019. "An augmented autoregressive distributed lag bounds test for cointegration," Economic Modelling, Elsevier, vol. 80(C), pages 130-141.
    17. Li, Biqing & Amin, Azka & Nureen, Naila & Saqib, Najia & Wang, LingYan & Rehman, Mubeen Abdur, 2024. "Assessing factors influencing renewable energy deployment and the role of natural resources in MENA countries," Resources Policy, Elsevier, vol. 88(C).
    18. Destek, Mehmet Akif & Aslan, Alper, 2020. "Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries," Renewable Energy, Elsevier, vol. 151(C), pages 1298-1306.
    19. Jun Wen & Waheed Ali & Jamal Hussain & Nadeem Akhtar Khan & Hadi Hussain & Najabat Ali & Rizwan Akhtar, 2022. "Dynamics between green innovation and environmental quality: new insights into South Asian economies," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 39(2), pages 543-565, July.
    20. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    21. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    22. Najabat Ali & Khamphe Phoungthong & Anwar Khan & Shah Abbas & Azer Dilanchiev & Shahbaz Tariq & Muhammad Nauman Sadiq, 2023. "Does FDI foster technological innovations? Empirical evidence from BRICS economies," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-20, March.
    23. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.
    2. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    3. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    4. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    5. Lisha, Liu & Mousa, Saeed & Arnone, Gioia & Muda, Iskandar & Huerta-Soto, Rosario & Shiming, Zhai, 2023. "Natural resources, green innovation, fintech, and sustainability: A fresh insight from BRICS," Resources Policy, Elsevier, vol. 80(C).
    6. Dervis Kirikkaleli & Hasan Güngör & Tomiwa Sunday Adebayo, 2022. "Consumption‐based carbon emissions, renewable energy consumption, financial development and economic growth in Chile," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1123-1137, March.
    7. Zhiheng Wu & Guisheng Hou & Baogui Xin, 2020. "The Causality between Participation in GVCs, Renewable Energy Consumption and CO 2 Emissions," Sustainability, MDPI, vol. 12(3), pages 1-26, February.
    8. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).
    9. Pata, Ugur Korkut & Ertugrul, Hasan Murat, 2023. "Do the Kyoto Protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis," Resources Policy, Elsevier, vol. 81(C).
    10. Najia Saqib & Haider Mahmood & Aamir Hussain Siddiqui & Muhammad Asif Shamim, 2022. "The Link between Economic Growth and Sustainable Energy in G7-Countries and E7-Countries: Evidence from a Dynamic Panel Threshold Model," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 294-302, September.
    11. Narasingha Das & Partha Gangopadhyay & Mohammad Mahtab Alam & Haider Mahmood & Pinki Bera & Khurshid Khudoykulov & Labani Dey & Md. Emran Hossain, 2024. "Does greenwashing obstruct sustainable environmental technologies and green financing from promoting environmental sustainability? Analytical evidence from the Indian economy," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 1069-1080, February.
    12. Chen, Jiamin & Chen, Yuwei, 2024. "Does natural resources rent promote carbon neutrality: The role of digital finance," Resources Policy, Elsevier, vol. 92(C).
    13. Ibrar Hussain & Umar Hayat & Md Shabbir Alam & Uzma Khan, 2024. "A Dynamic Analysis of the Twin-Deficit Hypothesis: the Case of a Developing Country," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(1), pages 25-52, March.
    14. Xin, Yongrong & Ajaz, Tahseen & Shahzad, Mohsin & Luo, Jia, 2023. "How productive capacities influence trade-adjusted resources consumption in China: Testing resource-based EKC," Resources Policy, Elsevier, vol. 81(C).
    15. Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
    16. Long, Han & Prasad, Biman & Krishna, Victor & Tang, Kai & Chang, Chun-Ping, 2024. "Understanding the key determinants of Fiji's renewable energy," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1144-1157.
    17. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    18. Soumen Rej & Barnali Nag & Md. Emran Hossain, 2022. "Can Renewable Energy and Export Help in Reducing Ecological Footprint of India? Empirical Evidence from Augmented ARDL Co-Integration and Dynamic ARDL Simulations," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    19. Muhammet Daştan & Hakan Eygü, 2024. "An empirical investigation of the link between economic growth, unemployment, and ecological footprint in Turkey: Bridging the EKC and EPC hypotheses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18957-18988, July.
    20. Kusiyah Kusiyah & Mansoor Mushtaq & Shabbir Ahmed & Ansar Abbas & Mochammad Fahlevi, 2024. "Impact of Urbanization on Environmental Eminence: Moderating Role of Renewable Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 244-257, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:6:d:10.1007_s10668-023-04398-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.