IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i6d10.1007_s10668-023-03245-6.html
   My bibliography  Save this article

Exploring the potential of agricultural system change as an integrated adaptation strategy for water and food security in the Indus basin

Author

Listed:
  • Wouter Julius Smolenaars

    (Wageningen University)

  • Muhammad Khalid Jamil

    (Wageningen University
    Pakistan Agricultural Research Council)

  • Sanita Dhaubanjar

    (Utrecht University
    International Centre for Integrated Mountain Development)

  • Arthur F. Lutz

    (Utrecht University)

  • Walter Immerzeel

    (Utrecht University)

  • Fulco Ludwig

    (Wageningen University)

  • Hester Biemans

    (Wageningen University
    Wageningen Environmental Research)

Abstract

Water security and food security in the Indus basin are highly interlinked and subject to severe stresses. Irrigation water demands presently already exceed what the basin can sustainably provide, but per-capita food availability remains limited. Rapid population growth and climate change are projected to further intensify pressure on the interdependencies between water and food security. The agricultural system of the Indus basin must therefore change and adapt to be able to achieve the associated Sustainable Development Goals (SDGs). The development of robust policies to guide such changes requires a thorough understanding of the synergies and trade-offs that different strategies for agricultural development may have for water and food security. In this study, we defined three contrasting trajectories for agricultural system change based on a review of scientific literature on regional agricultural developments and a stakeholder consultation workshop. We assessed the consequences of these trajectories for water and food security with a spatially explicit modeling framework for two scenarios of climatic and socio-economic change over the period 1980–2080. Our results demonstrate that agricultural system changes can ensure per capita food production in the basin remains sufficient under population growth. However, such changes require additional irrigation water resources and may strongly aggravate water stress. Conversely, a shift to sustainable water management can reduce water stress but has the consequence that basin-level food self-sufficiency may not be feasible in future. This suggests that biophysical limits likely exist that prevent agricultural system changes to ensure both sufficient food production and improve water security in the Indus basin under strong population growth. Our study concludes that agricultural system changes are an important adaptation mechanism toward achieving water and food SDGs, but must be developed alongside other strategies that can mitigate its adverse trade-offs.

Suggested Citation

  • Wouter Julius Smolenaars & Muhammad Khalid Jamil & Sanita Dhaubanjar & Arthur F. Lutz & Walter Immerzeel & Fulco Ludwig & Hester Biemans, 2024. "Exploring the potential of agricultural system change as an integrated adaptation strategy for water and food security in the Indus basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15177-15212, June.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03245-6
    DOI: 10.1007/s10668-023-03245-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03245-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03245-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Salam & Muhammad Jehanzeb Masud Cheema & Wanchang Zhang & Saddam Hussain & Azeem Khan & Muhammad Bilal & Arfan Arshad & Sikandar Ali & Muhammad Awais Zaman, 2020. "Groundwater Storage Change Estimation Using Grace Satellite Data In Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 13-18, February.
    2. Kirby, Mac & Ahmad, Mobin-ud-Din & Mainuddin, Mohammed & Khaliq, Tasneem & Cheema, M.J.M., 2017. "Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050," Agricultural Water Management, Elsevier, vol. 179(C), pages 34-46.
    3. Sukhwinder Singh & Julian Park, 2018. "Drivers of change in groundwater resources: a case study of the Indian Punjab," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 965-979, August.
    4. A. F. Lutz & W. W. Immerzeel & C. Siderius & R. R. Wijngaard & S. Nepal & A. B. Shrestha & P. Wester & H. Biemans, 2022. "South Asian agriculture increasingly dependent on meltwater and groundwater," Nature Climate Change, Nature, vol. 12(6), pages 566-573, June.
    5. Agnieszka Baer-Nawrocka & Arkadiusz Sadowski, 2019. "Food security and food self-sufficiency around the world: A typology of countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    6. repec:plo:pone00:0190224 is not listed on IDEAS
    7. Clapp, Jennifer, 2017. "Food self-sufficiency: Making sense of it, and when it makes sense," Food Policy, Elsevier, vol. 66(C), pages 88-96.
    8. Bijl, David L. & Bogaart, Patrick W. & Kram, Tom & de Vries, Bert J.M. & van Vuuren, Detlef P., 2016. "Long-term water demand for electricity, industry and households," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 75-86.
    9. Muhammad Salam & Muhammad Jehanzeb Masud Cheema & Wanchang Zhang & Saddam Hussain & Azeem Khan & Muhammad Bilal & Arfan Arshad & Sikandar Ali & Muhammad Awais Zaman, 2020. "Groundwater Storage Change Estimation Using Grace Satellite Data In Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 10-15, February.
    10. H. Biemans & C. Siderius & A. F. Lutz & S. Nepal & B. Ahmad & T. Hassan & W. Bloh & R. R. Wijngaard & P. Wester & A. B. Shrestha & W. W. Immerzeel, 2019. "Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain," Nature Sustainability, Nature, vol. 2(7), pages 594-601, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan E. Núñez-Ríos & Norman Aguilar-Gallegos & Jacqueline Y. Sánchez-García & Pedro Pablo Cardoso-Castro, 2020. "Systemic Design for Food Self-Sufficiency in Urban Areas," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    2. Danyang Gao & Albert S. Chen & Fayyaz Ali Memon, 2024. "A Systematic Review of Methods for Investigating Climate Change Impacts on Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 1-43, January.
    3. Lorenzo Rosa & Matteo Sangiorgio, 2025. "Global water gaps under future warming levels," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Brankov, Tatjana & Matkovski, Bojan & Jeremić, Marija & Đurić, Ivan, 2021. "Food self-sufficiency of the SEE countries: Is the region prepared for a future crisis?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(16).
    5. Zappalà, Guglielmo, 2024. "Adapting to climate change accounting for individual beliefs," Journal of Development Economics, Elsevier, vol. 169(C).
    6. Veronika Yu. Chernova & Veronika Yu. Chernova & Alexander M. Zobov & Ekaterina A. Degtereva & Vasily S. Starostin & Inna V. Andronova, 2020. "Sustainable economy: evaluation of food self-sufficiency in Russia," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 1541-1554, March.
    7. Saddam Hussain & Saba Malik & Muhammad Jehanzeb Masud Cheema & Muhammad Umair Ashraf & Muhammad Mazhar Iqbal & Sikandar Ali & Lubna Anjum & Muhammad Aslam & Hassan Afzal, 2020. "An Overview On Emerging Water Scarcity Challange In Pakistan, Its Consumption, Causes, Impacts And Remedial Measures," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 22-31, March.
    8. Tatjana Brankov & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2021. "Food Self-Sufficiency of the SEE Countries; Is the Region Prepared for a Future Crisis?," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    9. Do, Manh Hung & Nguyen, Trung Thanh & Grote, Ulrike, 2023. "Land consolidation, rice production, and agricultural transformation: Evidence from household panel data for Vietnam," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 157-173.
    10. Eckart Woertz, 2020. "Wither the self-sufficiency illusion? Food security in Arab Gulf States and the impact of COVID-19," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 757-760, August.
    11. Ayat Ullah & Nasir Mahmood & Alam Zeb & Harald Kächele, 2020. "Factors Determining Farmers’ Access to and Sources of Credit: Evidence from the Rain-Fed Zone of Pakistan," Agriculture, MDPI, vol. 10(12), pages 1-13, November.
    12. Jin Guo & Tetsuji Tanaka, 2020. "The Effectiveness of Self-Sufficiency Policy: International Price Transmissions in Beef Markets," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
    13. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    14. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    15. Sohail Abbas & Shazia Kousar & Amber Pervaiz, 2021. "Effects of energy consumption and ecological footprint on CO2 emissions: an empirical evidence from Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13364-13381, September.
    16. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    18. Tule, Moses K. & Salisu, Afees A. & Chiemeke, Charles C., 2019. "Can agricultural commodity prices predict Nigeria's inflation?," Journal of Commodity Markets, Elsevier, vol. 16(C).
    19. Svanidze, Miranda & Götz, Linde & Djuric, Ivan & Glauben, Thomas, 2019. "Food security and the functioning of wheat markets in Eurasia: a comparative price transmission analysis for the countries of Central Asia and the South Caucasus," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(3), pages 733-752.
    20. Song, Shuang & Goh, Jenson C.L. & Tan, Hugh T.W., 2021. "Is food security an illusion for cities? A system dynamics approach to assess disturbance in the urban food supply chain during pandemics," Agricultural Systems, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03245-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.