IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i3d10.1007_s10668-023-03046-x.html
   My bibliography  Save this article

Sustainability evaluation of transportation supply chains by common set of weights-network DEA and Shannon’s entropy in the presence of zero inputs

Author

Listed:
  • Amirali Fathi

    (Islamic Azad University)

  • Reza Farzipoor Saen

    (Sultan Qaboos University)

Abstract

The transport industry is one of the main contributors to environmental pollutions. Sustainability evaluation of the transport industry helps companies to increase their awareness and leads to the right decisions. This study addresses the subject of sustainability for the transportation supply chain. Data envelopment analysis (DEA is a popular approach for efficiency evaluation. This work develops a common set of weights (CSW) model using two-stage network DEA and Shannon’s entropy. The proposed CSW model evaluates the sustainability of transportation supply chains in DEA context. The objective of this paper is to propose an integrated slack-based two-stage network DEA model with zero inputs and CSW analysis using Shannon’s entropy technique. To calculate the optimal weights, the Shannon entropy technique is used. To the best of the authors’ knowledge, there is no two-stage network DEA model based on Shannon’s entropy for evaluating the sustainability of transport companies when there are zero inputs. The proposed model can fully rank DMUs. In this study, optimal scores by different weights are obtained and can be applied in real-world problems. To demonstrate the applicability of the proposed approach, the sustainability of transportation supply chains is assessed.

Suggested Citation

  • Amirali Fathi & Reza Farzipoor Saen, 2024. "Sustainability evaluation of transportation supply chains by common set of weights-network DEA and Shannon’s entropy in the presence of zero inputs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 7999-8025, March.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-03046-x
    DOI: 10.1007/s10668-023-03046-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03046-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03046-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zijiang Yang & Xiaogang Wang & Dongming Sun, 2010. "Using the bootstrap method to detect influential DMUs in data envelopment analysis," Annals of Operations Research, Springer, vol. 173(1), pages 89-103, January.
    2. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    3. Mirhedayatian, Seyed Mostafa & Azadi, Majid & Farzipoor Saen, Reza, 2014. "A novel network data envelopment analysis model for evaluating green supply chain management," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 544-554.
    4. Lee, Hsuan-Shih & Chu, Ching-Wu & Zhu, Joe, 2011. "Super-efficiency DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 212(1), pages 141-147, July.
    5. Azadi, Majid & Shabani, Amir & Khodakarami, Mohsen & Farzipoor Saen, Reza, 2014. "Planning in feasible region by two-stage target-setting DEA methods: An application in green supply chain management of public transportation service providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 324-338.
    6. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    7. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    8. Karambu Kiende Gatimbu & Maurice Juma Ogada & Nancy L. M. Budambula, 2020. "Environmental efficiency of small-scale tea processors in Kenya: an inverse data envelopment analysis (DEA) approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3333-3345, April.
    9. Guowei Che & Zeming Wang & Zhengli Yang, 2021. "Construction and application of a comprehensive coordination and cross-efficiency sustainable development evaluation model: a case study of 31 provinces and regions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 151-171, January.
    10. HATAMI-MARBINI, Adel & TAVANA, Madjid & SAATI, Saber & AGRELL, Per J., 2013. "Allocating fixed resources and setting targets using a common-weights DEA approach," LIDAM Reprints CORE 2474, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    12. Mahdiloo, Mahdi & Saen, Reza Farzipoor & Lee, Ki-Hoon, 2015. "Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 168(C), pages 279-289.
    13. Kumar, V.N.S.A. & Kumar, V. & Brady, M. & Garza-Reyes, Jose Arturo & Simpson, M., 2017. "Resolving forward-reverse logistics multi-period model using evolutionary algorithms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 458-469.
    14. Lee, Ki-Hoon & Farzipoor Saen, Reza, 2012. "Measuring corporate sustainability management: A data envelopment analysis approach," International Journal of Production Economics, Elsevier, vol. 140(1), pages 219-226.
    15. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Sueyoshi, Toshiyuki & Wang, Derek, 2014. "Sustainability development for supply chain management in U.S. petroleum industry by DEA environmental assessment," Energy Economics, Elsevier, vol. 46(C), pages 360-374.
    18. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    19. Ghazi, Amineh & Hosseinzadeh Lotfi, Farhad, 2019. "Assessment and budget allocation of Iranian natural gas distribution company- A CSW DEA based model," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 112-118.
    20. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.
    21. Liang-jun Long, 2021. "Eco-efficiency and effectiveness evaluation toward sustainable urban development in China: a super-efficiency SBM–DEA with undesirable outputs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14982-14997, October.
    22. Lei Chen & Fei-Mei Wu & Feng Feng & Fujun Lai & Ying-Ming Wang, 2018. "A Common Set of Weights for Ranking Decision-Making Units with Undesirable Outputs: A Double Frontiers Data Envelopment Analysis Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-25, December.
    23. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    24. Lee, Hsuan-Shih & Zhu, Joe, 2012. "Super-efficiency infeasibility and zero data in DEA," European Journal of Operational Research, Elsevier, vol. 216(2), pages 429-433.
    25. Chen, Yao & Liang, Liang, 2011. "Super-efficiency DEA in the presence of infeasibility: One model approach," European Journal of Operational Research, Elsevier, vol. 213(1), pages 359-360, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saen, Reza Farzipoor & Karimi, Balal & Fathi, Amirali, 2025. "Unleashing efficiency potential: The power of non-convex double frontiers in sustainable transportation supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saen, Reza Farzipoor & Karimi, Balal & Fathi, Amirali, 2025. "Unleashing efficiency potential: The power of non-convex double frontiers in sustainable transportation supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Zohreh Sadeghi & Reza Farzipoor Saen & Mahdi Moradzadehfard, 2022. "RETRACTED ARTICLE: Developing a network data envelopment analysis model for appraising sustainable supply chains: a sustainability accounting approach," Operations Management Research, Springer, vol. 15(3), pages 809-824, December.
    4. Hsiao-Yen Mao & Wen-Min Lu & Hsin-Yen Shieh, 2023. "Exploring the Influence of Environmental Investment on Multinational Enterprises’ Performance from the Sustainability and Marketability Efficiency Perspectives," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    5. Peykani, Pejman & Seyed Esmaeili, Fatemeh Sadat & Pishvaee, Mir Saman & Rostamy-Malkhalifeh, Mohsen & Hosseinzadeh Lotfi, Farhad, 2024. "Matrix-based network data envelopment analysis: A common set of weights approach," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    6. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    7. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    8. Sin Lee & Tzu‐Han Chang & Yung‐ho Chiu, 2024. "Exploring the influence of fintech patents on operation efficiency and market efficiency in Taiwan's commercial banking sector‐meta entropy dynamic two‐stage DDF model," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 45(6), pages 4276-4291, September.
    9. Jorge Antunes & Abdollah Hadi-Vencheh & Ali Jamshidi & Yong Tan & Peter Wanke, 2022. "Bank efficiency estimation in China: DEA-RENNA approach," Annals of Operations Research, Springer, vol. 315(2), pages 1373-1398, August.
    10. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    11. Somayeh Soheilirad & Kannan Govindan & Abbas Mardani & Edmundas Kazimieras Zavadskas & Mehrbakhsh Nilashi & Norhayati Zakuan, 2018. "Application of data envelopment analysis models in supply chain management: a systematic review and meta-analysis," Annals of Operations Research, Springer, vol. 271(2), pages 915-969, December.
    12. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    13. Kao, Chiang, 2014. "Efficiency decomposition for general multi-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 232(1), pages 117-124.
    14. Bao-Ngoc Tong & Cheng-Ping Cheng & Lien-Wen Liang & Yi-Jun Liu, 2023. "Using Network DEA to Explore the Effect of Mobile Payment on Taiwanese Bank Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    15. Majid Azadi & Zohreh Moghaddas & Reza Farzipoor Saen & Angappa Gunasekaran & Sachin Kumar Mangla & Alessio Ishizaka, 2023. "Using network data envelopment analysis to assess the sustainability and resilience of healthcare supply chains in response to the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 328(1), pages 107-150, September.
    16. Fenfen Li & Bo Dai & Qifan Wu, 2021. "Dynamic Green Growth Assessment of China’s Industrial System with an Improved SBM Model and Global Malmquist Index," Mathematics, MDPI, vol. 9(20), pages 1-26, October.
    17. Bai, Xuejie & Jin, Zeng & Chiu, Yung-Ho, 2021. "Performance evaluation of China's railway passenger transportation sector," Research in Transportation Economics, Elsevier, vol. 90(C).
    18. Bai, Xue-Jie & Yan, Wen-Kai & Chiu, Yung-Ho, 2015. "Performance evaluation of China's Hi-tech zones in the post financial crisis era — Analysis based on the dynamic network SBM model," China Economic Review, Elsevier, vol. 34(C), pages 122-134.
    19. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    20. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-03046-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.