IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v46y2023i2d10.1007_s10203-023-00394-1.html
   My bibliography  Save this article

Correction: Revisiting the 1/N-strategy: a neural network framework for optimal strategies

Author

Listed:
  • Marcos Escobar-Anel

    (University of Western Ontario)

  • Lorenz Theilacker

    (Technical University of Munich)

  • Rudi Zagst

    (Technical University of Munich)

Abstract

This work has two main objectives. First, we design a data-driven neural network approach to portfolio optimization within expected utility theory. The methodology is inspired by Li and Forsyth (Insur Math Econ 86:189–204, 2019. https://doi.org/10.1016/j.insmatheco.2019.03.001 ), who worked on target based defined contribution plans. Our proposal and the architecture of the model is flexible enough to address a variety of specific portfolio problems, from standard optimal utility allocation with constraints, to optimal deviations from a benchmark. Using the celebrated 1/N-Strategy (see DeMiguel et al. in Rev Financ Stud 22(5):1915–1953, 2007. https://doi.org/10.1093/rfs/hhm075 ) as benchmark constitutes the second objective of the paper. We consider two assets on a single path of historical return data for an investor whose utility is represented by a constant relative risk aversion function. Across several levels of risk aversion, we revisit the literature claims that it is essentially impossible to significantly outperform 1/N. Using our advanced method, we confirm that this is only true for high levels of risk aversion, but the 1/N can be consistently outperformed for low and moderate risk aversion levels.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Marcos Escobar-Anel & Lorenz Theilacker & Rudi Zagst, 2023. "Correction: Revisiting the 1/N-strategy: a neural network framework for optimal strategies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(2), pages 543-543, December.
  • Handle: RePEc:spr:decfin:v:46:y:2023:i:2:d:10.1007_s10203-023-00394-1
    DOI: 10.1007/s10203-023-00394-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-023-00394-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-023-00394-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    3. Johannes Hauptmann & Anja Hoppenkamps & Aleksey Min & Franz Ramsauer & Rudi Zagst, 2014. "Forecasting market turbulence using regime-switching models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(2), pages 139-164, May.
    4. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    5. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    6. Javier Estrada, 2006. "Downside Risk in Practice," Journal of Applied Corporate Finance, Morgan Stanley, vol. 18(1), pages 117-125, March.
    7. He, Lin & Liang, Zongxia, 2013. "Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 643-649.
    8. Elena Vigna, 2014. "On efficiency of mean--variance based portfolio selection in defined contribution pension schemes," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 237-258, February.
    9. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
    10. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    11. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    2. Chen, Xingjiang & Ruan, Xinfeng & Zhang, Wenjun, 2021. "Dynamic portfolio choice and information trading with recursive utility," Economic Modelling, Elsevier, vol. 98(C), pages 154-167.
    3. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    4. Du Du & Heng-fu Zou, 2008. "Intertemporal Portfolio Choice under Multiple Types of Event Risks," CEMA Working Papers 332, China Economics and Management Academy, Central University of Finance and Economics.
    5. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    6. Escobar-Anel, Marcos & Spies, Ben & Zagst, Rudi, 2024. "Mean–variance optimization under affine GARCH: A utility-based solution," Finance Research Letters, Elsevier, vol. 59(C).
    7. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    8. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    9. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    10. Moreira, Alan & Muir, Tyler, 2019. "Should Long-Term Investors Time Volatility?," Journal of Financial Economics, Elsevier, vol. 131(3), pages 507-527.
    11. Anna Battauz & Alessandro Sbuelz, 2018. "Non†myopic portfolio choice with unpredictable returns: The jump†to†default case," European Financial Management, European Financial Management Association, vol. 24(2), pages 192-208, March.
    12. Anna Battauz & Marzia Donno & Alessandro Sbuelz, 2017. "Reaching nirvana with a defaultable asset?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 31-52, November.
    13. Chung, Kee H. & Smith, William T. & Wu, Tao L., 2009. "Time diversification: Definitions and some closed-form solutions," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1101-1111, June.
    14. Forsyth, Peter A., 2020. "Optimal dynamic asset allocation for DC plan accumulation/decumulation: Ambition-CVAR," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 230-245.
    15. Daniela Neykova & Marcos Escobar & Rudi Zagst, 2015. "Optimal investment in multidimensional Markov-modulated affine models," Annals of Finance, Springer, vol. 11(3), pages 503-530, November.
    16. Boyle, Phelim & Imai, Junichi & Tan, Ken Seng, 2008. "Computation of optimal portfolios using simulation-based dimension reduction," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 327-338, December.
    17. Daniel Andrei & Michael Hasler, 2020. "Dynamic Attention Behavior Under Return Predictability," Management Science, INFORMS, vol. 66(7), pages 2906-2928, July.
    18. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    19. Guiyuan Ma & Song-Ping Zhu, 2022. "Revisiting the Merton Problem: from HARA to CARA Utility," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 651-686, February.
    20. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.

    More about this item

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:46:y:2023:i:2:d:10.1007_s10203-023-00394-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.