IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i16p2664-d1727754.html
   My bibliography  Save this article

Dynamic Portfolio Optimization Using Information from a Crisis Indicator

Author

Listed:
  • Victor Gonzalo

    (Department of Mathematics, Technical University of Munich, 85748 Munich, Germany)

  • Markus Wahl

    (Department of Mathematics, Technical University of Munich, 85748 Munich, Germany)

  • Rudi Zagst

    (Department of Mathematics, Technical University of Munich, 85748 Munich, Germany)

Abstract

Investors face the challenge of how to incorporate economic and financial forecasts into their investment strategy, especially in times of financial crisis. To model this situation, we consider a financial market consisting of a risk-free asset with a constant interest rate as well as a risky asset whose drift and volatility is influenced by a stochastic process indicating the probability of potential market downturns. We use a dynamic portfolio optimization approach in continuous time to maximize the expected utility of terminal wealth and solve the corresponding HJB equations for the general class of HARA utility functions. The resulting optimal strategy can be obtained in closed form. It corresponds to a CPPI strategy with a stochastic multiplier that depends on the information from the crisis indicator. In addition to the theoretical results, a performance analysis of the derived strategy is implemented. The specified model is fitted using historic market data and the performance is compared to the optimal portfolio strategy obtained in a Black–Scholes framework without crisis information. The new strategy clearly dominates the BS-based CPPI strategy with respect to the Sharpe Ratio and Adjusted Sharpe Ratio.

Suggested Citation

  • Victor Gonzalo & Markus Wahl & Rudi Zagst, 2025. "Dynamic Portfolio Optimization Using Information from a Crisis Indicator," Mathematics, MDPI, vol. 13(16), pages 1-36, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2664-:d:1727754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/16/2664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/16/2664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Hauptmann & Anja Hoppenkamps & Aleksey Min & Franz Ramsauer & Rudi Zagst, 2014. "Forecasting market turbulence using regime-switching models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(2), pages 139-164, May.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Gabriel Frahm, 2018. "An Intersection–Union Test for the Sharpe Ratio," Risks, MDPI, vol. 6(2), pages 1-13, April.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Arsalane Chouaib Guidoum & Kamal Boukhetala, 2020. "Performing Parallel Monte Carlo and Moment Equations Methods for Itô and Stratonovich Stochastic Differential Systems: R Package Sim.DiffProc," Post-Print hal-03188407, HAL.
    6. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    7. Jakub Trybuła & Dariusz Zawisza, 2019. "Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences—Stochastic Factor Case," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 966-987, August.
    8. Luz Rocío Sotomayor & Abel Cadenillas, 2009. "Explicit Solutions Of Consumption‐Investment Problems In Financial Markets With Regime Switching," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 251-279, April.
    9. Jan Kallsen & Johannes Muhle-Karbe, 2010. "Utility Maximization In Affine Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 459-477.
    10. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branger, Nicole & Muck, Matthias & Seifried, Frank Thomas & Weisheit, Stefan, 2017. "Optimal portfolios when variances and covariances can jump," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 59-89.
    2. Daniela Neykova & Marcos Escobar & Rudi Zagst, 2015. "Optimal investment in multidimensional Markov-modulated affine models," Annals of Finance, Springer, vol. 11(3), pages 503-530, November.
    3. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    4. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    5. Marcos Escobar-Anel & Lorenz Theilacker & Rudi Zagst, 2023. "Revisiting the 1/N-strategy: a neural network framework for optimal strategies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(2), pages 505-542, December.
    6. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    7. Guiyuan Ma & Song-Ping Zhu, 2022. "Revisiting the Merton Problem: from HARA to CARA Utility," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 651-686, February.
    8. Kraft, Holger & Meyer-Wehmann, André & Seifried, Frank Thomas, 2020. "Dynamic asset allocation with relative wealth concerns in incomplete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    9. Benjamín Vallejo Jiménez & Francisco Venegas Martínez, 2017. "Optimal consumption and portfolio rules when the asset price is driven by a time-inhomogeneous Markov modulated fractional Brownian motion with," Economics Bulletin, AccessEcon, vol. 37(1), pages 314-326.
    10. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    11. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    12. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    13. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    14. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    15. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    16. Yumo Zhang, 2023. "Utility maximization in a stochastic affine interest rate and CIR risk premium framework: a BSDE approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 97-128, June.
    17. Florian Gutekunst & Martin Herdegen & David Hobson, 2025. "Optimal Investment and Consumption in a Stochastic Factor Model," Papers 2509.09452, arXiv.org.
    18. Jan Kallsen & Johannes Muhle-Karbe, 2009. "Utility maximization in models with conditionally independent increments," Papers 0911.3608, arXiv.org.
    19. Escobar-Anel, Marcos & Spies, Ben & Zagst, Rudi, 2024. "Mean–variance optimization under affine GARCH: A utility-based solution," Finance Research Letters, Elsevier, vol. 59(C).
    20. Marcos Escobar-Anel & Ben Spies & Rudi Zagst, 2024. "Optimal consumption and investment in general affine GARCH models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 987-1026, September.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2664-:d:1727754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.