IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A polynomial optimization approach to constant rebalanced portfolio selection

  • Yuichi Takano

    ()

  • Renata Sotirov

    ()

We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion. In order to solve the POPs of high degree, we develop a cutting-plane algorithm based on semidefinite programming. Our algorithm can solve problems that can not be handled by any of known polynomial optimization solvers. Copyright The Author(s) 2012

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1007/s10589-011-9436-9
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal Computational Optimization and Applications.

Volume (Year): 52 (2012)
Issue (Month): 3 (July)
Pages: 645-666

as
in new window

Handle: RePEc:spr:coopap:v:52:y:2012:i:3:p:645-666
Contact details of provider: Web page: http://www.springer.com/math/journal/10589

Order Information: Web: http://link.springer.de/orders.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Fleten, Stein-Erik & Hoyland, Kjetil & Wallace, Stein W., 2002. "The performance of stochastic dynamic and fixed mix portfolio models," European Journal of Operational Research, Elsevier, vol. 140(1), pages 37-49, July.
  2. Maranas, C. D. & Androulakis, I. P. & Floudas, C. A. & Berger, A. J. & Mulvey, J. M., 1997. "Solving long-term financial planning problems via global optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1405-1425, June.
  3. Hibiki, Norio, 2006. "Multi-period stochastic optimization models for dynamic asset allocation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 365-390, February.
  4. Yuichi Takano & Jun-ya Gotoh, 2011. "Constant Rebalanced Portfolio Optimization Under Nonlinear Transaction Costs," Asia-Pacific Financial Markets, Springer, vol. 18(2), pages 191-211, May.
  5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
  6. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
  7. Luenberger, David G., 1997. "Investment Science," OUP Catalogue, Oxford University Press, number 9780195108095, March.
  8. Hiroshi Konno & Rei Yamamoto, 2005. "A Mean-Variance-Skewness Model: Algorithm And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 409-423.
  9. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:52:y:2012:i:3:p:645-666. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.