IDEAS home Printed from https://ideas.repec.org/e/pso177.html
   My authors  Follow this author

Renata Sotirov

Personal Details

First Name:Renata
Middle Name:
Last Name:Sotirov
Suffix:
RePEc Short-ID:pso177
http://stuwww.uvt.nl/~sotirovr/

Affiliation

CentER for Economic Research
School of Economics and Management
Universiteit van Tilburg

Tilburg, Netherlands
http://center.uvt.nl/

: 31 13 4663050
31 13 4663066
P.O. Box 90153, 5000 LE Tilburg
RePEc:edi:cekubnl (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
  2. Takano, Y. & Sotirov, R., 2010. "A Polynomial Optimization Approach to Constant Rebalanced Portfolio Selection," Discussion Paper 2010-114, Tilburg University, Center for Economic Research.
  3. Ashayeri, J. & Ma, N. & Sotirov, R., 2010. "An Aggregated Optimization Model for Multi-Head SMD Placements," Discussion Paper 2010-46, Tilburg University, Center for Economic Research.
  4. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Discussion Paper 2008-96, Tilburg University, Center for Economic Research.
  5. Rendl, F. & Sotirov, R., 2007. "Bounds for the quadratic assignment problem using the bundle method," Other publications TiSEM b6d298bc-77c9-4a6d-a043-5, Tilburg University, School of Economics and Management.
  6. Bai, Y.Q. & de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "Exploiting Group Symmetry in Truss Topology Optimization," Discussion Paper 2007-17, Tilburg University, Center for Economic Research.
  7. Anand, C. & Sotirov, R. & Terlaky, T. & Zheng, Z., 2007. "Magnetic resonance tissue density estimation using optimal SSFP pulse-sequence design," Other publications TiSEM 371b5075-1085-4bf5-bd55-4, Tilburg University, School of Economics and Management.
  8. de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Discussion Paper 2007-44, Tilburg University, Center for Economic Research.
  9. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
  10. de Klerk, E. & Newman, M.W. & Pasechnik, D.V. & Sotirov, R., 2006. "On the Lovasz O-number of Almost Regular Graphs With Application to Erdos-Renyi Graphs," Discussion Paper 2006-93, Tilburg University, Center for Economic Research.
  11. Fischer, I. & Gruber, G. & Rendl, F. & Sotirov, R., 2006. "Computational experience with a bundle approach for semidenfinite cutting plane relaxations of max-cut and equipartition," Other publications TiSEM 03dfd8c3-9216-4c75-8921-3, Tilburg University, School of Economics and Management.

Articles

  1. Jalal Ashayeri & Ning Ma & Renata Sotirov, 2015. "Supply chain network downsizing with product line pruning using a new demand substitution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(10), pages 1699-1716, October.
  2. E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
  3. Ashayeri, Jalal & Ma, Ning & Sotirov, Renata, 2015. "The redesign of a warranty distribution network with recovery processes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 184-197.
  4. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
  5. Ashayeri, J. & Ma, N. & Sotirov, R., 2014. "Supply chain downsizing under bankruptcy: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 154(C), pages 1-15.
  6. de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
  7. Renata Sotirov, 2014. "An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 16-30, February.
  8. Yuichi Takano & Renata Sotirov, 2012. "A polynomial optimization approach to constant rebalanced portfolio selection," Computational Optimization and Applications, Springer, vol. 52(3), pages 645-666, July.
  9. Maziar Salahi & Renata Sotirov & Tamás Terlaky, 2004. "On self-regular IPMs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 209-275, December.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Discussion Paper 2008-96, Tilburg University, Center for Economic Research.

    Cited by:

    1. Klerk, Etienne de, 2010. "Exploiting special structure in semidefinite programming: A survey of theory and applications," European Journal of Operational Research, Elsevier, vol. 201(1), pages 1-10, February.
    2. Sungwoo Park & Dianne P. O’Leary, 2015. "A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 558-571, August.
    3. de Klerk, E. & Pasechnik, D.V., 2009. "On Semidefinite Programming Relaxations of Association Schemes With Application to Combinatorial Optimization Problems," Discussion Paper 2009-54, Tilburg University, Center for Economic Research.

  2. Rendl, F. & Sotirov, R., 2007. "Bounds for the quadratic assignment problem using the bundle method," Other publications TiSEM b6d298bc-77c9-4a6d-a043-5, Tilburg University, School of Economics and Management.

    Cited by:

    1. Alexei Gaivoronski & Abdel Lisser & Rafael Lopez & Hu Xu, 2011. "Knapsack problem with probability constraints," Journal of Global Optimization, Springer, vol. 49(3), pages 397-413, March.
    2. F. Rendl, 2016. "Semidefinite relaxations for partitioning, assignment and ordering problems," Annals of Operations Research, Springer, vol. 240(1), pages 119-140, May.
    3. de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Discussion Paper 2007-44, Tilburg University, Center for Economic Research.
    4. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    5. Dobre, C., 2011. "Semidefinite programming approaches for structured combinatorial optimization problems," Other publications TiSEM e1ec09bd-b024-4dec-acad-7, Tilburg University, School of Economics and Management.
    6. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.

  3. Bai, Y.Q. & de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "Exploiting Group Symmetry in Truss Topology Optimization," Discussion Paper 2007-17, Tilburg University, Center for Economic Research.

    Cited by:

    1. Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.

  4. Anand, C. & Sotirov, R. & Terlaky, T. & Zheng, Z., 2007. "Magnetic resonance tissue density estimation using optimal SSFP pulse-sequence design," Other publications TiSEM 371b5075-1085-4bf5-bd55-4, Tilburg University, School of Economics and Management.

    Cited by:

    1. Rodrigo Garcés & Walter Gómez & Florian Jarre, 2011. "A self-concordance property for nonconvex semidefinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 77-92, August.

  5. de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Discussion Paper 2007-44, Tilburg University, Center for Economic Research.

    Cited by:

    1. Fanz Rendl & Renata Sotirov, 2018. "The min-cut and vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 159-187, January.
    2. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    3. José F. S. Bravo Ferreira & Yuehaw Khoo & Amit Singer, 2018. "Semidefinite programming approach for the quadratic assignment problem with a sparse graph," Computational Optimization and Applications, Springer, vol. 69(3), pages 677-712, April.
    4. Samuel Burer & Sunyoung Kim & Masakazu Kojima, 2014. "Faster, but weaker, relaxations for quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 59(1), pages 27-45, October.
    5. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Discussion Paper 2008-96, Tilburg University, Center for Economic Research.
    6. Feizollahi, Mohammad Javad & Feyzollahi, Hadi, 2015. "Robust quadratic assignment problem with budgeted uncertain flows," Operations Research Perspectives, Elsevier, vol. 2(C), pages 114-123.
    7. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    8. Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
    9. Nyberg, Axel & Westerlund, Tapio, 2012. "A new exact discrete linear reformulation of the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 314-319.
    10. de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
    11. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.

  6. Fischer, I. & Gruber, G. & Rendl, F. & Sotirov, R., 2006. "Computational experience with a bundle approach for semidenfinite cutting plane relaxations of max-cut and equipartition," Other publications TiSEM 03dfd8c3-9216-4c75-8921-3, Tilburg University, School of Economics and Management.

    Cited by:

    1. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    2. Alexander Engau & Miguel Anjos & Immanuel Bomze, 2013. "Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 35-59, August.
    3. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.

Articles

  1. E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.

    Cited by:

    1. José F. S. Bravo Ferreira & Yuehaw Khoo & Amit Singer, 2018. "Semidefinite programming approach for the quadratic assignment problem with a sparse graph," Computational Optimization and Applications, Springer, vol. 69(3), pages 677-712, April.

  2. Ashayeri, Jalal & Ma, Ning & Sotirov, Renata, 2015. "The redesign of a warranty distribution network with recovery processes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 184-197.

    Cited by:

    1. Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2016. "Closed-loop supply chains: What reverse logistics factors influence performance?," International Journal of Production Economics, Elsevier, vol. 175(C), pages 35-49.

  3. Ashayeri, J. & Ma, N. & Sotirov, R., 2014. "Supply chain downsizing under bankruptcy: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 154(C), pages 1-15.

    Cited by:

    1. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.

  4. de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.

    Cited by:

    1. Feizollahi, Mohammad Javad & Feyzollahi, Hadi, 2015. "Robust quadratic assignment problem with budgeted uncertain flows," Operations Research Perspectives, Elsevier, vol. 2(C), pages 114-123.

  5. Renata Sotirov, 2014. "An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 16-30, February.

    Cited by:

    1. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    2. Renata Sotirov, 2018. "Graph bisection revisited," Annals of Operations Research, Springer, vol. 265(1), pages 143-154, June.
    3. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2018. "Computational study of valid inequalities for the maximum k-cut problem," Annals of Operations Research, Springer, vol. 265(1), pages 5-27, June.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Renata Sotirov should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.