IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i1d10.1007_s10589-024-00558-8.html
   My bibliography  Save this article

IPRSDP: a primal-dual interior-point relaxation algorithm for semidefinite programming

Author

Listed:
  • Rui-Jin Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin-Wei Liu

    (Hebei University of Technology)

  • Yu-Hong Dai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

We propose an efficient primal-dual interior-point relaxation algorithm based on a smoothing barrier augmented Lagrangian, called IPRSDP, for solving semidefinite programming problems in this paper. The IPRSDP algorithm has three advantages over classical interior-point methods. Firstly, IPRSDP does not require the iterative points to be positive definite. Consequently, it can easily be combined with the warm-start technique used for solving many combinatorial optimization problems, which require the solutions of a series of semidefinite programming problems. Secondly, the search direction of IPRSDP is symmetric in itself, and hence the symmetrization procedure is not required any more. Thirdly, with the introduction of the smoothing barrier augmented Lagrangian function, IPRSDP can provide the explicit form of the Schur complement matrix. This enables the complexity of forming this matrix in IPRSDP to be comparable to or lower than that of many existing search directions. The global convergence of IPRSDP is established under suitable assumptions. Numerical experiments are made on the SDPLIB set, which demonstrate the efficiency of IPRSDP.

Suggested Citation

  • Rui-Jin Zhang & Xin-Wei Liu & Yu-Hong Dai, 2024. "IPRSDP: a primal-dual interior-point relaxation algorithm for semidefinite programming," Computational Optimization and Applications, Springer, vol. 88(1), pages 1-36, May.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-024-00558-8
    DOI: 10.1007/s10589-024-00558-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00558-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00558-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fischer, I. & Gruber, G. & Rendl, F. & Sotirov, R., 2006. "Computational experience with a bundle approach for semidenfinite cutting plane relaxations of max-cut and equipartition," Other publications TiSEM 03dfd8c3-9216-4c75-8921-3, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Chimani & Philipp Hungerländer, 2013. "Exact Approaches to Multilevel Vertical Orderings," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 611-624, November.
    2. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    3. Janez Povh, 2021. "On the Embed and Project Algorithm for the Graph Bandwidth Problem," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    4. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    5. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
    6. Alain Billionnet & Sourour Elloumi & Amélie Lambert & Angelika Wiegele, 2017. "Using a Conic Bundle Method to Accelerate Both Phases of a Quadratic Convex Reformulation," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 318-331, May.
    7. Alexander Engau & Miguel Anjos & Immanuel Bomze, 2013. "Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 35-59, August.
    8. F. Rendl, 2016. "Semidefinite relaxations for partitioning, assignment and ordering problems," Annals of Operations Research, Springer, vol. 240(1), pages 119-140, May.
    9. Timotej Hrga & Janez Povh, 2021. "MADAM: a parallel exact solver for max-cut based on semidefinite programming and ADMM," Computational Optimization and Applications, Springer, vol. 80(2), pages 347-375, November.
    10. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-024-00558-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.