IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i3d10.1007_s00180-018-0832-9.html
   My bibliography  Save this article

Sparse kernel deep stacking networks

Author

Listed:
  • Thomas Welchowski

    (University Hospital Bonn)

  • Matthias Schmid

    (University Hospital Bonn)

Abstract

This article introduces the supervised deep learning method sparse kernel deep stacking networks (SKDSNs), which extend traditional kernel deep stacking networks (KDSNs) by incorporating a set of data-driven regularization and variable selection steps to improve predictive performance in high-dimensional settings. Before model fitting, variable pre-selection is carried out using genetic algorithms in combination with the randomized dependence coefficient, accounting for non-linear dependencies among the inputs and the outcome variable. During model fitting, internal variable selection is based on a ranked feature ordering which is tuned within the model-based optimization framework. Further regularization steps include $$L_1$$ L 1 -penalized kernel regression and dropout. Our simulation studies demonstrate an improved prediction accuracy of SKDSNs compared to traditional KDSNs. Runtime analysis of SKDSNs shows that the dimension of the random Fourier transformation greatly affects computational efficiency, and that the speed of SKDSNs can be improved by applying a subsampling-based ensemble strategy. Numerical experiments show that the latter strategy further increases predictive performance. Application of SKDSNs to three biomedical data sets confirm the results of the simulation study. SKDSNs are implemented in a new version of the R package kernDeepStackNet.

Suggested Citation

  • Thomas Welchowski & Matthias Schmid, 2019. "Sparse kernel deep stacking networks," Computational Statistics, Springer, vol. 34(3), pages 993-1014, September.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-018-0832-9
    DOI: 10.1007/s00180-018-0832-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0832-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0832-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    2. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    3. Tsallis, Constantino & Stariolo, Daniel A., 1996. "Generalized simulated annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 233(1), pages 395-406.
    4. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    5. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Schmid & Bernd Bischl & Hans A. Kestler, 2019. "Proceedings of Reisensburg 2016–2017," Computational Statistics, Springer, vol. 34(3), pages 943-944, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    3. Bauer, Ida & Haupt, Harry & Linner, Stefan, 2024. "Pinball boosting of regression quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 200(C).
    4. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    5. Robert Suchting & Michael S. Businelle & Stephen W. Hwang & Nikhil S. Padhye & Yijiong Yang & Diane M. Santa Maria, 2020. "Predicting Daily Sheltering Arrangements among Youth Experiencing Homelessness Using Diary Measurements Collected by Ecological Momentary Assessment," IJERPH, MDPI, vol. 17(18), pages 1-17, September.
    6. Bergeaud, Antonin & Raimbault, Juste, 2020. "An empirical analysis of the spatial variability of fuel prices in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 131-143.
    7. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    8. Kleijnen, Jack P.C. & Mehdad, E., 2014. "Multivariate Versus Univariate Kriging Metamodels for Multi-Response Simulation Models (Revision of 2012-039)," Discussion Paper 2014-012, Tilburg University, Center for Economic Research.
    9. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    10. Carolina G. Marcelino & João V. C. Avancini & Carla A. D. M. Delgado & Elizabeth F. Wanner & Silvia Jiménez-Fernández & Sancho Salcedo-Sanz, 2021. "Dynamic Electric Dispatch for Wind Power Plants: A New Automatic Controller System Using Evolutionary Algorithms," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    11. Cruz, Yarens J. & Villalonga, Alberto & Castaño, Fernando & Rivas, Marcelino & Haber, Rodolfo E., 2024. "Automated machine learning methodology for optimizing production processes in small and medium-sized enterprises," Operations Research Perspectives, Elsevier, vol. 12(C).
    12. Nandan, Rohit & Bandaru, Varaprasad & Meduri, Pridhvi & Jones, Curtis & Lollato, Romulo, 2024. "Evaluating the utility of weather generators in crop simulation models for in-season yield forecasting," Agricultural Systems, Elsevier, vol. 220(C).
    13. Finn Olesen, 1999. "Monetær integration i EU," Working Papers 2/99, University of Southern Denmark, Department of Sociology, Environmental and Business Economics.
    14. G. Dosi & M. C. Pereira & M. E. Virgillito, 2018. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
    15. Castellares, Fredy & Patrício, Silvio C. & Lemonte, Artur J., 2020. "On gamma-Gompertz life expectancy," Statistics & Probability Letters, Elsevier, vol. 165(C).
    16. Guilherme Lindenmeyer & Pedro Pablo Skorin & Hudson da Silva Torrent, 2021. "Using boosting for forecasting electric energy consumption during a recession: a case study for the Brazilian State Rio Grande do Sul," Letters in Spatial and Resource Sciences, Springer, vol. 14(2), pages 111-128, August.
    17. Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
    18. Arvind Krishna & Huan Tran & Chaofan Huang & Rampi Ramprasad & V. Roshan Joseph, 2024. "Adaptive Exploration and Optimization of Materials Crystal Structures," INFORMS Joural on Data Science, INFORMS, vol. 3(1), pages 68-83, April.
    19. Rubenthaler, Sylvain & Rydén, Tobias & Wiktorsson, Magnus, 2009. "Fast simulated annealing in with an application to maximum likelihood estimation in state-space models," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1912-1931, June.
    20. De la Fuente, Rodrigo & Aguayo, Maichel M. & Contreras-Bolton, Carlos, 2024. "An optimization-based approach for an integrated forest fire monitoring system with multiple technologies and surveillance drones," European Journal of Operational Research, Elsevier, vol. 313(2), pages 435-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-018-0832-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.