IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i3d10.1007_s00180-016-0667-1.html
   My bibliography  Save this article

Canonical correlation for principal components of time series

Author

Listed:
  • S. Yaser Samadi

    (Southern Illinois University)

  • L. Billard

    (University of Georgia)

  • M. R. Meshkani

    (Shahid Beheshti University)

  • A. Khodadadi

    (Shahid Beheshti University)

Abstract

With contemporary data collection capacity, data sets containing large numbers of different multivariate time series relating to a common entity (e.g., fMRI, financial stocks) are becoming more prevalent. One pervasive question is whether or not there are patterns or groups of series within the larger data set (e.g., disease patterns in brain scans, mining stocks may be internally similar but themselves may be distinct from banking stocks). There is a relatively large body of literature centered on clustering methods for univariate and multivariate time series, though most do not utilize the time dependencies inherent to time series. This paper develops an exploratory data methodology which in addition to the time dependencies, utilizes the dependency information between S series themselves as well as the dependency information between p variables within the series simultaneously while still retaining the distinctiveness of the two types of variables. This is achieved by combining the principles of both canonical correlation analysis and principal component analysis for time series to obtain a new type of covariance/correlation matrix for a principal component analysis to produce a so-called “principal component time series”. The results are illustrated on two data sets.

Suggested Citation

  • S. Yaser Samadi & L. Billard & M. R. Meshkani & A. Khodadadi, 2017. "Canonical correlation for principal components of time series," Computational Statistics, Springer, vol. 32(3), pages 1191-1212, September.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-016-0667-1
    DOI: 10.1007/s00180-016-0667-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0667-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0667-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, P. M., 1973. "Generalized canonical analysis for time series," Journal of Multivariate Analysis, Elsevier, vol. 3(2), pages 141-160, June.
    2. Yin, Xiangrong, 2004. "Canonical correlation analysis based on information theory," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 161-176, November.
    3. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    4. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    5. Joseph Simonian, 2010. "The most simple methodology to create a valid correlation matrix for risk management and option pricing purposes," Applied Economics Letters, Taylor & Francis Journals, vol. 17(18), pages 1767-1768.
    6. Katarina Košmelj & Vladimir Batagelj, 1990. "Cross-sectional approach for clustering time varying data," Journal of Classification, Springer;The Classification Society, vol. 7(1), pages 99-109, March.
    7. Shumway, Robert H., 2003. "Time-frequency clustering and discriminant analysis," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 307-314, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirukawa, Junichi & Raïssi, Hamdi, 2020. "Testing linear relationships between non-constant variances of economic variables," Economic Modelling, Elsevier, vol. 90(C), pages 182-189.
    2. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    3. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    4. Yıldırım, Ertugrul & Sukruoglu, Deniz & Aslan, Alper, 2014. "Energy consumption and economic growth in the next 11 countries: The bootstrapped autoregressive metric causality approach," Energy Economics, Elsevier, vol. 44(C), pages 14-21.
    5. Burkett, John P., 1998. "Bureaucratic behavior modeled by reduced-rank regression: The case of expenditures from the Soviet state budget," Journal of Economic Behavior & Organization, Elsevier, vol. 34(1), pages 173-187, January.
    6. Herwartz, Helmut & Reimers, Hans-Eggert, 2006. "Modelling the Fisher hypothesis: World wide evidence," Economics Working Papers 2006-04, Christian-Albrechts-University of Kiel, Department of Economics.
    7. Bilal Mehmood & Syed Hassan Raza & Mahwish Rana & Huma Sohaib & Muhammad Azhar Khan, 2014. "Triangular Relationship between Energy Consumption, Price Index and National Income in Asian Countries: A Pooled Mean Group Approach in Presence of Structural Breaks," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 610-620.
    8. Tyrväinen, Timo, 1991. "Unions, wages and employment: evidence from Finland," Bank of Finland Research Discussion Papers 16/1991, Bank of Finland.
    9. Anatoly A. Peresetsky & Ruslan I. Yakubov, 2017. "Autocorrelation in an unobservable global trend: does it help to forecast market returns?," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 152-169.
    10. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2016. "Does a small cost share reflect a negligible role for energy in economic production? Testing for aggregate production functions including capital, labor, and useful exergy through a cointegration-base," MPRA Paper 70850, University Library of Munich, Germany.
    11. Law, Siong Hook & Tan, Hui & baharumshah, ahmad, 1999. "Financial Liberalization in ASEAN and the Fisher Hypothesis," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 33, pages 65-86.
    12. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    14. Levent, Korap, 2007. "Modeling purchasing power parity using co-integration: evidence from Turkey," MPRA Paper 19584, University Library of Munich, Germany.
    15. Georgios Bertsatos & Plutarchos Sakellaris & Mike G. Tsionas, 2022. "Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure," Empirical Economics, Springer, vol. 62(2), pages 605-634, February.
    16. Ranjan Aneja & Umer J. Banday & Tanzeem Hasnat & Mustafa Koçoglu, 2017. "Renewable and Non-renewable Energy Consumption and Economic Growth: Empirical Evidence from Panel Error Correction Model," Jindal Journal of Business Research, , vol. 6(1), pages 76-85, June.
    17. Vassilis Monastiriotis & Cigdem Borke Tunali, 2020. "The Sustainability of External Imbalances in the European Periphery," Open Economies Review, Springer, vol. 31(2), pages 273-294, April.
    18. David Owyong & Shandre Thangavelu, 2001. "An empirical study on public capital spillovers from the USA to Canada," Applied Economics, Taylor & Francis Journals, vol. 33(11), pages 1493-1499.
    19. Yih-Ing Hser & Haikang Shen & Chih-Ping Chou & Stephen C. Messer & M. Douglas Anglin, 2001. "Analytic Approaches for Assessing Long-Term Treatment Effects," Evaluation Review, , vol. 25(2), pages 233-262, April.
    20. Zamani, Mehrzad, 2007. "Energy consumption and economic activities in Iran," Energy Economics, Elsevier, vol. 29(6), pages 1135-1140, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-016-0667-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.