IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v20y2023i1d10.1007_s10287-023-00456-0.html
   My bibliography  Save this article

Optimal allocation of demand response considering transmission system congestion

Author

Listed:
  • Vinicius Neves Motta

    (Polytechnique Montreal)

  • Miguel F. Anjos

    (University of Edinburgh)

  • Michel Gendreau

    (Polytechnique Montreal)

Abstract

The increasing penetration of renewable energy sources in the electricity grid brings new operational challenges. This brings up the need for effective means to provide demand response in spite of its distributed nature throughout the grid. Aggregators can be created to manage a set of such demand response resources, but deciding how to allocate an aggregator’s resources is an important problem. One of the aspects that needs more attention is the impact of the transmission system on these decisions. In this paper, we propose a short-term optimization model for allocating demand response(DR) resources as well as generation resources to supply external demand that is offered after the scheduling decision is made. The DR resources will only be available for use after the scheduling decision is made. Finally, our work also considers the impact of congestion in the transmission system when allocating DR. We propose the use of a semidefinite relaxation to provide a good initial point to solve our model with the aim of guaranteeing that we will find an optimal solution. Results from numerical tests with the IEEE 96-RTS and the ACTIVSG500 test grids are reported. We found that DR resources mitigates congestion management, allowing the generators to supply more of the external demand that is offered. Besides that, we observe that using our proposed solution methodology, we were able to obtain optimal solution for both cases studies, which is not the case when solving the original formulation for the ACTIVSG500 grid.

Suggested Citation

  • Vinicius Neves Motta & Miguel F. Anjos & Michel Gendreau, 2023. "Optimal allocation of demand response considering transmission system congestion," Computational Management Science, Springer, vol. 20(1), pages 1-22, December.
  • Handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00456-0
    DOI: 10.1007/s10287-023-00456-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00456-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00456-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilbert, François & Anjos, Miguel F. & Marcotte, Patrice & Savard, Gilles, 2015. "Optimal design of bilateral contracts for energy procurement," European Journal of Operational Research, Elsevier, vol. 246(2), pages 641-650.
    2. K. Selvakumar & K. Vijayakumar & C. S. Boopathi, 2017. "Demand Response Unit Commitment Problem Solution for Maximizing Generating Companies’ Profit," Energies, MDPI, vol. 10(10), pages 1-18, September.
    3. Clay Campaigne & Shmuel S. Oren, 2016. "Firming renewable power with demand response: an end-to-end aggregator business model," Journal of Regulatory Economics, Springer, vol. 50(1), pages 1-37, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hélène Le Cadre & Bernardo Pagnoncelli & Tito Homem-De-Mello & Olivier Beaude, 2018. "Designing Coalition-Based Fair and Stable Pricing Mechanisms Under Private Information on Consumers' Reservation Prices," Working Papers hal-01353763, HAL.
    2. Le Cadre, Hélène & Pagnoncelli, Bernardo & Homem-de-Mello, Tito & Beaude, Olivier, 2019. "Designing coalition-based fair and stable pricing mechanisms under private information on consumers’ reservation prices," European Journal of Operational Research, Elsevier, vol. 272(1), pages 270-291.
    3. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    4. Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
    5. Pedro Faria, 2019. "Distributed Energy Resources Management," Energies, MDPI, vol. 12(3), pages 1-3, February.
    6. Daeho Kim & Dong Gu Choi, 2023. "The aggregator’s contract design problem in the electricity demand response market," Operational Research, Springer, vol. 23(1), pages 1-47, March.
    7. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    8. Gärttner, Johannes & Flath, Christoph M. & Weinhardt, Christof, 2018. "Portfolio and contract design for demand response resources," European Journal of Operational Research, Elsevier, vol. 266(1), pages 340-353.
    9. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    10. Hélène Le Cadre & Bernardo Pagnoncelli & Tito Homem-De-Mello & Olivier Beaude, 2018. "Designing Coalition-Based Fair and Stable Pricing Mechanisms Under Private Information on Consumers' Reservation Prices," Post-Print hal-01353763, HAL.
    11. Flottmann, Jonty H. & Akimov, Alexandr & Simshauser, Paul, 2022. "Firming merchant renewable generators in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 262-276.
    12. Grimm, Veronika & Orlinskaya, Galina & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2021. "Optimal design of retailer-prosumer electricity tariffs using bilevel optimization," Omega, Elsevier, vol. 102(C).
    13. Seungmi Lee & Jinho Kim, 2018. "Analytical Assessment for System Peak Reduction by Demand Responsive Resources Considering Their Operational Constraints in Wholesale Electricity Market," Energies, MDPI, vol. 11(12), pages 1-15, November.
    14. Psarras, John, 2016. "Multicriteria decision support to evaluate potential long-term natural gas supply alternatives: The case of GreeceAuthor-Name: Androulaki, Stella," European Journal of Operational Research, Elsevier, vol. 253(3), pages 791-810.
    15. Daeho Kim & Hyungkyu Cheon & Dong Gu Choi & Seongbin Im, 2022. "Operations Research Helps the Optimal Bidding of Virtual Power Plants," Interfaces, INFORMS, vol. 52(4), pages 344-362, July.
    16. Rai, Ussama & Oluleye, Gbemi & Hawkes, Adam, 2022. "An optimisation model to determine the capacity of a distributed energy resource to contract with a balancing services aggregator," Applied Energy, Elsevier, vol. 306(PA).
    17. Ruokamo, Enni & Kopsakangas-Savolainen, Maria & Meriläinen, Teemu & Svento, Rauli, 2019. "Towards flexible energy demand – Preferences for dynamic contracts, services and emissions reductions," Energy Economics, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00456-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.