IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v177y2024i4d10.1007_s10584-024-03718-1.html
   My bibliography  Save this article

Global warming determines future increase in compound dry and hot days within wheat growing seasons worldwide

Author

Listed:
  • Yan He

    (Chinese Academy of Meteorological Sciences
    Chinese Academy of Meteorological Sciences)

  • Yanxia Zhao

    (Chinese Academy of Meteorological Sciences
    Chinese Academy of Meteorological Sciences)

  • Shao Sun

    (Chinese Academy of Meteorological Sciences
    Chinese Academy of Meteorological Sciences)

  • Jiayi Fang

    (Hangzhou Normal University)

  • Yi Zhang

    (Chinese Academy of Meteorological Sciences
    Chinese Academy of Meteorological Sciences)

  • Qing Sun

    (Chinese Academy of Meteorological Sciences
    Chinese Academy of Meteorological Sciences)

  • Li Liu

    (Chinese Academy of Meteorological Sciences
    Chinese Academy of Meteorological Sciences)

  • Yihong Duan

    (Chinese Academy of Meteorological Sciences)

  • Xiaokang Hu

    (Beijing Normal University)

  • Peijun Shi

    (Beijing Normal University)

Abstract

Compound dry and hot extremes are proved to be the most damaging climatic stressor to wheat thereby with grave implications for food security, thus it is critical to systematically reveal their changes under unabated global warming. In this study, we comprehensively investigate the global change in compound dry and hot days (CDHD) within dynamic wheat growing seasons during 2015–2100 under 4 socio-economic scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) based on the latest downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Our results demonstrate a notable increase in CDHD’s frequency ( $${CDHD}_{f}$$ CDHD f ) and severity ( $${CDHD}_{s}$$ CDHD s ) worldwide under all SSPs, such increase is sharper over southern Asia in winter wheat growing season, and southern Canada, northern America, Ukraine, Turkey and northern Kazakhstan in spring wheat growing season. As the top 10 wheat producer, India and America will suffer much more detrimental CDHD in their wheat growing season. Adopting a low forcing pathway will mitigate CDHD risks in up to 93.3% of wheat areas. Positive dependence between droughts and heats in wheat growing season is found over more than 74.2% of wheat areas, which will effectively promote the frequency and severity of CDHD. Global warming will dominate the increase of CDHD directly by increasing hot days and indirectly by enhancing potential evapotranspiration thereby aggravating droughts. This study helps to optimize adaptation strategies for mitigating CDHD risks on wheat production, and provides new insights and analysis paradigm for investigating future variations in compound extremes occurring within dynamic crops growing seasons.

Suggested Citation

  • Yan He & Yanxia Zhao & Shao Sun & Jiayi Fang & Yi Zhang & Qing Sun & Li Liu & Yihong Duan & Xiaokang Hu & Peijun Shi, 2024. "Global warming determines future increase in compound dry and hot days within wheat growing seasons worldwide," Climatic Change, Springer, vol. 177(4), pages 1-22, April.
  • Handle: RePEc:spr:climat:v:177:y:2024:i:4:d:10.1007_s10584-024-03718-1
    DOI: 10.1007/s10584-024-03718-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-024-03718-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-024-03718-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Wang & Yang Chen & Simon F. B. Tett & Zhongwei Yan & Panmao Zhai & Jinming Feng & Jiangjiang Xia, 2020. "Anthropogenically-driven increases in the risks of summertime compound hot extremes," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Emanuele Bevacqua & Giuseppe Zappa & Flavio Lehner & Jakob Zscheischler, 2022. "Precipitation trends determine future occurrences of compound hot–dry events," Nature Climate Change, Nature, vol. 12(4), pages 350-355, April.
    3. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    4. Ethan E. Butler & Peter Huybers, 2013. "Adaptation of US maize to temperature variations," Nature Climate Change, Nature, vol. 3(1), pages 68-72, January.
    5. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    6. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    7. Qurat-ul-Ain Ahmad & Eddy Moors & Hester Biemans & Nuzba Shaheen & Ilyas Masih & Muhammad Zia Rahman Hashmi, 2023. "Climate-induced shifts in irrigation water demand and supply during sensitive crop growth phases in South Asia," Climatic Change, Springer, vol. 176(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Jacob Kim-Sherman & Lee Seltzer, 2024. "Clustering in Natural Disaster Damages," Staff Reports 1135, Federal Reserve Bank of New York.
    3. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    4. Fengchun Ye & Pinya Wang & Yang Yang & Lili Ren & Jianping Tang & Hong Liao, 2025. "Anthropogenic forcing dominates changes in compound long-duration dry and heat extremes in China," Climatic Change, Springer, vol. 178(2), pages 1-19, February.
    5. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2022. "Robust Dynamic Space-Time Panel Data Models Using ?-Contamination: An Application to Crop Yields and Climate Change," IZA Discussion Papers 15815, Institute of Labor Economics (IZA).
    7. Jackson, Nicole D. & Gunda, Thushara, 2021. "Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States," Applied Energy, Elsevier, vol. 302(C).
    8. Dominik Paprotny & Michalis I. Vousdoukas & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman & Luc Feyen, 2020. "Pan-European hydrodynamic models and their ability to identify compound floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 933-957, April.
    9. Huang, Na & Lin, Xiaomao & Lun, Fei & Zeng, Ruiyun & Sassenrath, Gretchen F. & Pan, Zhihua, 2024. "Nitrogen fertilizer use and climate interactions: Implications for maize yields in Kansas," Agricultural Systems, Elsevier, vol. 220(C).
    10. Wei Wang & Jingxiu Wu & Slobodan P. Simonovic & Ziwu Fan, 2025. "An Integrated Trivariate-Dimensional Statistical and Hydrodynamic Modeling Method for Compound Flood Hazard Assessment in a Coastal City," Land, MDPI, vol. 14(4), pages 1-27, April.
    11. Calabrese, Raffaella & Dombrowski, Timothy & Mandel, Antoine & Pace, R. Kelley & Zanin, Luca, 2024. "Impacts of extreme weather events on mortgage risks and their evolution under climate change: A case study on Florida," European Journal of Operational Research, Elsevier, vol. 314(1), pages 377-392.
    12. Kai Tao & Jian Fang & Wentao Yang & Jiayi Fang & Baoyin Liu, 2023. "Characterizing compound floods from heavy rainfall and upstream–downstream extreme flow in middle Yangtze River from 1980 to 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1097-1114, January.
    13. Shahid Latif & Slobodan P. Simonovic, 2022. "Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5599-5632, November.
    14. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    15. Wang, Di & Zhang, Peng & Chen, Shuai & Zhang, Ning, 2024. "Adaptation to temperature extremes in Chinese agriculture, 1981 to 2010," Journal of Development Economics, Elsevier, vol. 166(C).
    16. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2023. "Robust dynamic space–time panel data models using $$\varepsilon $$ ε -contamination: an application to crop yields and climate change," Empirical Economics, Springer, vol. 64(6), pages 2475-2509, June.
    17. Mahshid Ghanbari & Mazdak Arabi & Matei Georgescu & Ashley M. Broadbent, 2023. "The role of climate change and urban development on compound dry-hot extremes across US cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Kui Xu & Zhentao Han & Lingling Bin & Ruozhu Shen & Yan Long, 2025. "Rapid forecasting of compound flooding for a coastal area based on data-driven approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1399-1421, January.
    19. Michael Keane & Timothy Neal, 2020. "Comparing deep neural network and econometric approaches to predicting the impact of climate change on agricultural yield," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 59-80.
    20. Ivica Buhiniček & Dražen Kaučić & Zdravko Kozić & Mirko Jukić & Jerko Gunjača & Hrvoje Šarčević & Domagoj Stepinac & Domagoj Šimić, 2021. "Trends in Maize Grain Yields across Five Maturity Groups in a Long-Term Experiment with Changing Genotypes," Agriculture, MDPI, vol. 11(9), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:4:d:10.1007_s10584-024-03718-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.