IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i4d10.1007_s10584-020-02829-9.html
   My bibliography  Save this article

Projected effects of climate change on the distribution and abundance of breeding waterfowl in Eastern Canada

Author

Listed:
  • Antoine Adde

    (Université Laval)

  • Diana Stralberg

    (University of Alberta)

  • Travis Logan

    (Ouranos Climate Change Consortium)

  • Christine Lepage

    (Canadian Wildlife Service, Environment and Climate Change Canada)

  • Steven Cumming

    (Université Laval
    University of Alberta)

  • Marcel Darveau

    (Université Laval
    Ducks Unlimited Canada)

Abstract

As breeding areas are becoming warmer and wetter, climatic changes are likely to affect the distributions of millions of waterfowl in Eastern Canada. The objective of this study was to assess the potential effects of climate change on the breeding distribution and abundance of 12 common waterfowl species, by using a climate envelope modeling approach. Our response variables were species counts on 317 helicopter plots (25 km2) averaged over 22 years (1996–2017). We applied a covariate selection procedure to select the best subset of a panel of 170 climate covariates for each species, which we then used to fit quantile regression forest models. Climate change projections were applied to the waterfowl models to infer 2011–2100 abundances. From the projected abundances, we computed climate suitability indices that accounted for potential temporal mismatches between climate change and the biota, as well as the expected velocity of climate change. On average, with a maximum of 4 covariates per model, the variance explained was 41% for out-of-bag predictions. Overall, the magnitude of absolute projected changes peaked under the “high” greenhouse gas concentration trajectory (RCP8.5) and at the end of the century (2071–2100). Species-specific projections indicated that climate change would potentially increase the abundance and core distributions of 7/12 species, whereas 5/12 species would experience a decrease. In particular, large decreases were projected for Barrow’s goldeneye, an imperiled boreal cavity nester. Our spatially explicit indices of climate suitability deliver important information for targeting areas to preserve waterfowl, ecosystems, and the services they provide.

Suggested Citation

  • Antoine Adde & Diana Stralberg & Travis Logan & Christine Lepage & Steven Cumming & Marcel Darveau, 2020. "Projected effects of climate change on the distribution and abundance of breeding waterfowl in Eastern Canada," Climatic Change, Springer, vol. 162(4), pages 2339-2358, October.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:4:d:10.1007_s10584-020-02829-9
    DOI: 10.1007/s10584-020-02829-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02829-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02829-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    2. Martin Girardin & Aurélie Terrier, 2015. "Mitigating risks of future wildfires by management of the forest composition: an analysis of the offsetting potential through boreal Canada," Climatic Change, Springer, vol. 130(4), pages 587-601, June.
    3. Chris D. Thomas & Jack J. Lennon, 1999. "Birds extend their ranges northwards," Nature, Nature, vol. 399(6733), pages 213-213, May.
    4. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    5. Withey, Patrick & van Kooten, G. Cornelis, 2011. "The effect of climate change on optimal wetlands and waterfowl management in Western Canada," Ecological Economics, Elsevier, vol. 70(4), pages 798-805, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily S Hope & Daniel W McKenney & John H Pedlar & Brian J Stocks & Sylvie Gauthier, 2016. "Wildfire Suppression Costs for Canada under a Changing Climate," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-18, August.
    2. Watts, Michael J. & Fordham, Damien A. & Akçakaya, H. Resit & Aiello-Lammens, Matthew E. & Brook, Barry W., 2013. "Tracking shifting range margins using geographical centroids of metapopulations weighted by population density," Ecological Modelling, Elsevier, vol. 269(C), pages 61-69.
    3. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    4. Mouhamadou Bamba Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    5. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    6. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    7. Mouhamadou Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    8. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    10. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    11. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    12. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    13. Wong, Linda & van Kooten, G. Cornelis & Clarke, Judith A., 2012. "The Impact of Agriculture on Waterfowl Abundance: Evidence from Panel Data," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-14, August.
    14. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    15. Hamdi-Cherif, Meriem & Waisman, Henri & Guivarch, Céline & Hourcade, Jean-Charles, 2012. "Mitigation costs in second-best economies: time profile of emission reductions and sequencing of accompanying measures," Conference papers 332206, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    17. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    18. Jung-A Yang & Sooyoul Kim & Sangyoung Son & Nobuhito Mori & Hajime Mase, 2020. "Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios," Climatic Change, Springer, vol. 162(2), pages 425-442, September.
    19. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    20. Fahad Saeed & Mansour Almazroui & Nazrul Islam & Mariam Saleh Khan, 2017. "Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1635-1647, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:4:d:10.1007_s10584-020-02829-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.