IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v150y2018i3d10.1007_s10584-018-2270-7.html
   My bibliography  Save this article

Dynamic adaptive pathways in downscaled climate change scenarios

Author

Listed:
  • Nicholas A. Cradock-Henry

    (Landscape Policy & Governance, Manaaki Whenua – Landcare Research)

  • Bob Frame

    (Landscape Policy & Governance, Manaaki Whenua – Landcare Research)

  • Benjamin L. Preston

    (Infrastructure Resilience and Environmental Policy, RAND Corporation)

  • Andy Reisinger

    (New Zealand Agricultural Greenhouse Gas Research Centre)

  • Dale S. Rothman

    (University of Denver)

Abstract

The parallel scenario process enables characterization of climate-related risks and response options to climate change under different socio-economic futures and development prospects. The process is based on representative concentration pathways, shared socio-economic pathways, and shared policy assumptions. Although this scenario architecture is a powerful tool for evaluating the intersection of climate and society at the regional and global level, more specific context is needed to explore and understand risks, drivers, and enablers of change at the national and local level. We discuss the need for a stronger recognition of such national-scale characteristics to make climate change scenarios more relevant at the national and local scale, and propose ways to enrich the scenario architecture with locally relevant details that enhance salience, legitimacy, and credibility for stakeholders. Dynamic adaptive pathways are introduced as useful tools to draw out which elements of a potentially infinite scenario space connect with decision-relevant aspects of particular climate-related and non-climate-related risks and response options. Reviewing adaptation pathways for New Zealand case studies, we demonstrate how this approach could bring the global-scale scenario architecture within reach of local-scale decision-making. Such a process would enhance the utility of scenarios for mapping climate-related risks and adaptation options at the local scale, involving appropriate stakeholder involvement.

Suggested Citation

  • Nicholas A. Cradock-Henry & Bob Frame & Benjamin L. Preston & Andy Reisinger & Dale S. Rothman, 2018. "Dynamic adaptive pathways in downscaled climate change scenarios," Climatic Change, Springer, vol. 150(3), pages 333-341, October.
  • Handle: RePEc:spr:climat:v:150:y:2018:i:3:d:10.1007_s10584-018-2270-7
    DOI: 10.1007/s10584-018-2270-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2270-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2270-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evelina Trutnevyte & Céline Guivarch & Robert Lempert & Neil Strachan, 2016. "Reinvigorating the scenario technique to expand uncertainty consideration," Climatic Change, Springer, vol. 135(3), pages 373-379, April.
    2. Lawrence, Judy & Haasnoot, Marjolijn, 2017. "What it took to catalyse uptake of dynamic adaptive pathways planning to address climate change uncertainty," Environmental Science & Policy, Elsevier, vol. 68(C), pages 47-57.
    3. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    4. Thomas Wilbanks & Kristie Ebi, 2014. "SSPs from an impact and adaptation perspective," Climatic Change, Springer, vol. 122(3), pages 473-479, February.
    5. Nigel Arnell & Ben Lloyd-Hughes, 2014. "The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios," Climatic Change, Springer, vol. 122(1), pages 127-140, January.
    6. Lauren Rickards & Ray Ison & Hartmut Fünfgeld & John Wiseman, 2014. "Opening and Closing the Future: Climate Change, Adaptation, and Scenario Planning," Environment and Planning C, , vol. 32(4), pages 587-602, August.
    7. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    8. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    9. J. Barnett & S. Graham & C. Mortreux & R. Fincher & E. Waters & A. Hurlimann, 2014. "A local coastal adaptation pathway," Nature Climate Change, Nature, vol. 4(12), pages 1103-1108, December.
    10. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Absar, Syeda Mariya & McManamay, Ryan A. & Preston, Benjamin L. & Taylor, Adam M., 2021. "Bridging global socioeconomic scenarios with policy adaptations to examine energy-water tradeoffs," Energy Policy, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    2. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    3. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    4. van Sluisveld, Mariësse A.E. & Hof, Andries F. & Carrara, Samuel & Geels, Frank W. & Nilsson, Måns & Rogge, Karoline & Turnheim, Bruno & van Vuuren, Detlef P., 2020. "Aligning integrated assessment modelling with socio-technical transition insights: An application to low-carbon energy scenario analysis in Europe," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    6. Dale S. Rothman & Paul Raskin & Kasper Kok & John Robinson & Jill Jäger & Barry Hughes & Paul C. Sutton, 2023. "Global Discontinuity: Time for a Paradigm Shift in Global Scenario Analysis," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    7. Cotterman, Turner, 2019. "Why Rapid and Deep Decarbonization isn’t Simple: Linking Bottom-up Socio-technical Decision-making Insights with Top-down Macroeconomic Analyses," Conference papers 333088, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Xiao-Chen Yuan & Xun Sun & Upmanu Lall & Zhi-Fu Mi & Jun He & Yi-Ming Wei, 2016. "China’s socioeconomic risk from extreme events in a changing climate: a hierarchical Bayesian model," Climatic Change, Springer, vol. 139(2), pages 169-181, November.
    9. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.
    10. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    11. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    12. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    13. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    14. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    15. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    16. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    17. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    19. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    20. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," Ecological Economics, Elsevier, vol. 228(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:150:y:2018:i:3:d:10.1007_s10584-018-2270-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.