IDEAS home Printed from
   My bibliography  Save this article

District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios


  • L. Paleari


  • G. Cappelli
  • S. Bregaglio
  • M. Acutis
  • M. Donatelli
  • G. Sacchi
  • E. Lupotto
  • M. Boschetti
  • G. Manfron
  • R. Confalonieri


Using crop models as supporting tools for analyzing the interaction between genotype and environment represents an opportunity to identify priorities within breeding programs. This study represents the first attempt to use simulation models to define rice ideotypes improved for their resistance to biotic stressors (i.e., diseases); moreover, it extends approaches for evaluating the impact of changes in traits for tolerance to abiotic constraints (temperature shocks inducing sterility). The analysis—targeting the improvement of 34 varieties in six Italian rice districts—was focused on the impact of blast disease, and of pre-flowering cold- and heat-induced spikelet sterility. In silico ideotypes were tested at 5-km spatial resolution under current conditions and climate change scenarios centered on 2020, 2050, and 2085, derived according to the projections of two general circulation models–Hadley and NCAR–for two IPCC emission scenarios–A1B and B1. The study was performed using a dedicated simulation platform, i.e., ISIde, explicitly developed for ideotyping studies. The ideotypes improved for blast resistance obtained clear yield increases for all the combinations GCM × emission scenario × time horizon, i.e., 12.1 % average yield increase under current climate, although slightly decreasing for time windows approaching the end of the century and with a marked spatial heterogeneity in responses across districts. Concerning abiotic stressors, increasing tolerance to cold-induced sterility would lead to a substantial yield increase (+9.8 %) only for Indica-type varieties under current climate, whereas no increases are expected under future conditions and, in general, for Japonica-type varieties. Given the process-based logic behind the models used—supporting coherence of model responses under future scenarios—this study provides useful information for rice breeding programs to be realized in the medium-long term. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • L. Paleari & G. Cappelli & S. Bregaglio & M. Acutis & M. Donatelli & G. Sacchi & E. Lupotto & M. Boschetti & G. Manfron & R. Confalonieri, 2015. "District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios," Climatic Change, Springer, vol. 132(4), pages 661-675, October.
  • Handle: RePEc:spr:climat:v:132:y:2015:i:4:p:661-675
    DOI: 10.1007/s10584-015-1457-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Boote, K. J. & Kropff, M. J. & Bindraban, P. S., 2001. "Physiology and modelling of traits in crop plants: implications for genetic improvement," Agricultural Systems, Elsevier, vol. 70(2-3), pages 395-420.
    2. repec:oup:revage:v:31:y:2009:i:4:p:779-792. is not listed on IDEAS
    3. Vida-Lina Esperanza B. Alpuerto & George W. Norton & Jeffrey Alwang & Abdelbagi M. Ismail, 2009. "Economic Impact Analysis of Marker-Assisted Breeding for Tolerance to Salinity and Phosphorous Deficiency in Rice," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(4), pages 779-792.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bregaglio, Simone & Orlando, Francesca & Forni, Emanuela & De Gregorio, Tommaso & Falzoi, Simone & Boni, Chiara & Pisetta, Michele & Confalonieri, Roberto, 2016. "Development and evaluation of new modelling solutions to simulate hazelnut (Corylus avellana L.) growth and development," Ecological Modelling, Elsevier, vol. 329(C), pages 86-99.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:132:y:2015:i:4:p:661-675. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.