IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i4p951-960.html
   My bibliography  Save this article

The use of the land-sea warming contrast under climate change to improve impact metrics

Author

Listed:
  • Manoj Joshi
  • Andrew Turner
  • Chris Hope

Abstract

A favoured method of assimilating information from state-of-the-art climate models into integrated assessment models of climate impacts is to use the transient climate response (TCR) of the climate models as an input, sometimes accompanied by a pattern matching approach to provide spatial information. More recent approaches to the problem use TCR with another independent piece of climate model output: the land-sea surface warming ratio (φ). In this paper we show why the use of φ in addition to TCR has such utility. Multiple linear regressions of surface temperature change onto TCR and φ in 22 climate models from the CMIP3 multi-model database show that the inclusion of φ explains a much greater fraction of the inter-model variance than using TCR alone. The improvement is particularly pronounced in North America and Eurasia in the boreal summer season, and in the Amazon all year round. The use of φ as the second metric is beneficial for three reasons: firstly it is uncorrelated with TCR in state-of-the-art climate models and can therefore be considered as an independent metric; secondly, because of its projected time-invariance, the magnitude of φ is better constrained than TCR in the immediate future; thirdly, the use of two variables is much simpler than approaches such as pattern scaling from climate models. Finally we show how using the latest estimates of φ from climate models with a mean value of 1.6—as opposed to previously reported values of 1.4—can significantly increase the mean time-integrated discounted damage projections in a state-of-the-art integrated assessment model by about 15 %. When compared to damages calculated without the inclusion of the land-sea warming ratio, this figure rises to 65 %, equivalent to almost 200 trillion dollars over 200 years. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Manoj Joshi & Andrew Turner & Chris Hope, 2013. "The use of the land-sea warming contrast under climate change to improve impact metrics," Climatic Change, Springer, vol. 117(4), pages 951-960, April.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:4:p:951-960
    DOI: 10.1007/s10584-013-0715-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0715-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0715-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hope, Chris W., 2011. "The social cost of CO2 from the PAGE09 model," Economics Discussion Papers 2011-39, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burda, Michael C. & Zessner-Spitzenberg, Leopold, 2024. "Greenhouse Gas Mitigation and Price-Driven Growth in a Solow-Swan Economy with an Environmental Limit," IZA Discussion Papers 16771, Institute of Labor Economics (IZA).
    2. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    3. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    4. Parkinson, Aidan & Guthrie, Peter, 2014. "Evaluating the energy performance of buildings within a value at risk framework with demonstration on UK offices," Applied Energy, Elsevier, vol. 133(C), pages 40-55.
    5. Jussi Lintunen & Lauri Vilmi, 2021. "Optimal Emission Prices Over the Business Cycles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 135-167, September.
    6. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    7. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    8. Pretis, Felix, 2021. "Exogeneity in climate econometrics," Energy Economics, Elsevier, vol. 96(C).
    9. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    10. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
    11. Valeria Costantini & Anil Markandya & Elena Paglialunga & Giorgia Sforna, 2018. "Impact and distribution of climatic damages: a methodological proposal with a dynamic CGE model applied to global climate negotiations," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 809-843, December.
    12. Ayodele Adekunle Faiyetole & Francis Adeyinka Adesina & Timothy Oyedepo Oyebisi, 2024. "Predicting the abatement costs of RCP climate projections under 2 °C warming limits in the Africa and Middle East Region (2010–2100)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29057-29074, November.
    13. Asjad Naqvi, 2015. "Modeling Growth, Distribution, and the Environment in a Stock-Flow Consistent Framework. WWWforEurope Policy Paper No. 18," WIFO Studies, WIFO, number 57883, March.
    14. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    15. Yannis Dafermos & Maria Nikolaidi, 2019. "Fiscal policy and ecological sustainability," FMM Working Paper 52-2019, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    16. Naqvi, Syed Ali Asjad, 2015. "Modeling Growth, Distribution, and the Environment in a Stock-Flow Consistent Framework," Ecological Economic Papers 2, WU Vienna University of Economics and Business.
    17. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    18. Chris Hope, 2013. "How high should climate change taxes be?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 17, pages 403-414, Edward Elgar Publishing.
    19. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    20. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:4:p:951-960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.