IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v5y2020i3d10.1007_s41247-020-00078-z.html
   My bibliography  Save this article

The Energy Representation of World GDP

Author

Listed:
  • Boris M. Dolgonosov

Abstract

The GDP–energy relationship is considered on a global scale. We propose a model which represents world gross product as a power-law function GDP = $$g{\left(EU\right)}^{\gamma }$$ g E U γ of current energy consumption $$E$$ E and total energy $$U$$ U consumed over all previous years and materialized in the form of production infrastructure. This energy-based production function has two parameters $$g$$ g and $$\gamma$$ γ that retain their values throughout the years under study (1965–2018), and hence they can be regarded as fundamental characteristics of the world economy within the energy paradigm that considers labor and capital as energy entities. The model describes empirical data with high accuracy (error 1.2%), despite the fact that energy consumption and GDP increase greatly over the period under study. To provide a robustness check, the production function was fitted to the data for a shortened interval of 1965–2000 with a further projection until 2018, which showed a small error of 1.8% in the target interval of 2001–2018. An additional verification of the model, based on the power-law dependencies of GDP, $$E$$ E and $$U$$ U on world population, confirmed the functional form of the production function and led to almost the same parameter values as those obtained independently.

Suggested Citation

  • Boris M. Dolgonosov, 2020. "The Energy Representation of World GDP," Biophysical Economics and Resource Quality, Springer, vol. 5(3), pages 1-5, September.
  • Handle: RePEc:spr:bioerq:v:5:y:2020:i:3:d:10.1007_s41247-020-00078-z
    DOI: 10.1007/s41247-020-00078-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-020-00078-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-020-00078-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    2. Gozgor, Giray & Lau, Chi Keung Marco & Lu, Zhou, 2018. "Energy consumption and economic growth: New evidence from the OECD countries," Energy, Elsevier, vol. 153(C), pages 27-34.
    3. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Dolgonosov, Boris M., 2016. "Knowledge production and world population dynamics," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 127-141.
    5. Boris M. Dolgonosov, 2018. "A Conceptual Model of the Relationship Among World Economy and Climate Indicators," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris M. Dolgonosov, 2020. "The energy representation of world GDP," Papers 2006.07938, arXiv.org.
    2. Magazzino, Cosimo & Drago, Carlo & Schneider, Nicolas, 2023. "Evidence of supply security and sustainability challenges in Nigeria’s power sector," Utilities Policy, Elsevier, vol. 82(C).
    3. Amir Iqbal & Xuan Tang & Samma Faiz Rasool, 2023. "Investigating the nexus between CO2 emissions, renewable energy consumption, FDI, exports and economic growth: evidence from BRICS countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2234-2263, March.
    4. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
    5. Wesley Burnett, J. & Madariaga, Jessica, 2017. "The convergence of U.S. state-level energy intensity," Energy Economics, Elsevier, vol. 62(C), pages 357-370.
    6. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    7. Liao, Hua & Peng, Ying & Wang, Fang-Zhi & Zhang, Tong, 2022. "Understanding energy use growth: The role of investment-GDP ratio," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 15-24.
    8. Oluseye Ibukun, Cleopatra & Temilola Osinubi, Tolulope & Nathaniel Oladunjoye, Opeyemi, 2021. "Growth-Led Energy Hypothesis In Nigeria: An Asymmetric Investigation," Ilorin Journal of Economic Policy, Department of Economics, University of Ilorin, vol. 8(1), pages 31-45, June.
    9. Husnain, Muhammad Iftikhar ul & Nasrullah, Nasrullah & Khan, Muhammad Aamir & Banerjee, Suvajit, 2021. "Scrutiny of income related drivers of energy poverty: A global perspective," Energy Policy, Elsevier, vol. 157(C).
    10. Mohammad Mafizur Rahman & Xuan-Binh (Benjamin) Vu & Son Nghiem, 2022. "Economic Growth in Six ASEAN Countries: Are Energy, Human Capital and Financial Development Playing Major Roles?," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    11. Richters, Oliver & Siemoneit, Andreas, 2019. "Growth imperatives: Substantiating a contested concept," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 126-137.
    12. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    13. Oliver Richters & Andreas Siemoneit, 2018. "The contested concept of growth imperatives: Technology and the fear of stagnation," Working Papers V-414-18, University of Oldenburg, Department of Economics, revised Nov 2018.
    14. Christopher Kennedy, 2020. "The energy embodied in the first and second industrial revolutions," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 887-898, August.
    15. Yasmeen, Humaira & Tan, Qingmei & Zameer, Hashim & Vo, Xuan Vinh & Shahbaz, Muhammad, 2021. "Discovering the relationship between natural resources, energy consumption, gross capital formation with economic growth: Can lower financial openness change the curse into blessing," Resources Policy, Elsevier, vol. 71(C).
    16. Osarumwense Osabuohien-Irabor & Igor Mikhailovich Drapkin, 2022. "The Impact of Technological Innovation on Energy Consumption in OECD Economies: the role of Outward Foreign Direct Investment and International Trade Openness," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 317-333, July.
    17. Rao, B. Bhaskara, 2010. "Estimates of the steady state growth rates for selected Asian countries with an extended Solow model," Economic Modelling, Elsevier, vol. 27(1), pages 46-53, January.
    18. Prof. Dr. Adem KALCA & Resc. Assist. Atakan DURMAZ, 2012. "Diaspora As The Instrument Of Humane Capital," International Journal of Business and Social Research, LAR Center Press, vol. 2(5), pages 94-104, October.
    19. Burda, Michael C. & Zessner-Spitzenberg, Leopold, 2024. "Greenhouse Gas Mitigation and Price-Driven Growth in a Solow-Swan Economy with an Environmental Limit," IZA Discussion Papers 16771, Institute of Labor Economics (IZA).
    20. João Juchem Neto & Julio Claeyssen, 2015. "Capital-induced labor migration in a spatial Solow model," Journal of Economics, Springer, vol. 115(1), pages 25-47, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:5:y:2020:i:3:d:10.1007_s41247-020-00078-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.