IDEAS home Printed from https://ideas.repec.org/a/spr/binfse/v6y2014i3p141-151.html
   My bibliography  Save this article

Robust Multi-criteria Service Composition in Information Systems

Author

Listed:
  • René Ramacher
  • Lars Mönch

Abstract

Service compositions are used to implement business processes in a variety of application domains. A quality of service (QoS)-aware selection of the service to be composed involves multiple, usually conflicting and possibly uncertain QoS attributes. A multi-criteria solution approach is desired to generate a set of alternative service selections. In addition, the uncertainty of QoS-attributes is neglected in existing solution approaches. Hence, the need for service reconfigurations is imposed to avoid the violation of QoS restrictions. The researched problem is NP-hard. This article presents a heuristic multi-criteria service selection approach that is designed to determine a Pareto frontier of alternative service selections in a reasonable amount of time. Taking into account the uncertainty of response times, the obtained service selections are robust with respect to the constrained execution time. The proposed solution approach is based on the Non-dominated Sorting Genetic Algorithm (NSGA)-II extended by heuristics that exploit problem specific characteristics of the QoS-aware service selection. The applicability of the solution approach is demonstrated by a simulation study. Copyright Springer Fachmedien Wiesbaden 2014

Suggested Citation

  • René Ramacher & Lars Mönch, 2014. "Robust Multi-criteria Service Composition in Information Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(3), pages 141-151, June.
  • Handle: RePEc:spr:binfse:v:6:y:2014:i:3:p:141-151
    DOI: 10.1007/s12599-014-0325-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s12599-014-0325-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s12599-014-0325-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Scholl, Armin, 2000. "Robuste Planung und Optimierung: Grundlagen, Konzepte und Methoden; experimentelle Untersuchungen," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9373, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikulin, Yury V., 2004. "Robustness in combinatorial optimization and scheduling theory: An annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 583, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    4. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    5. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    6. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    7. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    8. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    10. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    11. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    12. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    13. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    14. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    15. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    16. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    17. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    18. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Evers, L. & Dollevoet, T.A.B. & Barros, A.I. & Monsuur, H., 2011. "Robust UAV Mission Planning," Econometric Institute Research Papers EI 2011-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:6:y:2014:i:3:p:141-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.