IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v12y2025i1d10.1007_s40745-024-00513-8.html
   My bibliography  Save this article

Parameter Estimation for Geometric Lévy Processes with Constant Volatility

Author

Listed:
  • Sher Chhetri

    (University of South Carolina Sumter)

  • Hongwei Long

    (Florida Atlantic University)

  • Cory Ball

    (Oak Ridge National Laboratory)

Abstract

In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.

Suggested Citation

  • Sher Chhetri & Hongwei Long & Cory Ball, 2025. "Parameter Estimation for Geometric Lévy Processes with Constant Volatility," Annals of Data Science, Springer, vol. 12(1), pages 63-93, February.
  • Handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00513-8
    DOI: 10.1007/s40745-024-00513-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00513-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00513-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Hu, Yaozhong & Long, Hongwei, 2009. "Least squares estimator for Ornstein-Uhlenbeck processes driven by [alpha]-stable motions," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2465-2480, August.
    4. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    5. Kasonga, R. A., 1988. "The consistency of a non-linear least squares estimator from diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 30(2), pages 263-275, December.
    6. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    7. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    8. Marohn, Frank, 1999. "Estimating the index of a stable law via the pot-method," Statistics & Probability Letters, Elsevier, vol. 41(4), pages 413-423, February.
    9. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Backer, Stijn & Rocha, Luis E.C. & Ryckebusch, Jan & Schoors, Koen, 2025. "On the potential of quantum walks for modeling financial return distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    5. Chang-Yi Li & Son-Nan Chen & Shih-Kuei Lin, 2016. "Pricing derivatives with modeling CO emission allowance using a regime-switching jump diffusion model: with regime-switching risk premium," The European Journal of Finance, Taylor & Francis Journals, vol. 22(10), pages 887-908, August.
    6. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    7. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    8. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Ren, Panpan & Wu, Jiang-Lun, 2021. "Least squares estimation for path-distribution dependent stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    10. Laura Eslava & Fernando Baltazar-Larios & Bor Reynoso, 2022. "Maximum Likelihood Estimation for a Markov-Modulated Jump-Diffusion Model," Papers 2211.17220, arXiv.org.
    11. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    12. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    13. Matthew Lorig & Oriol Lozano-Carbass'e, 2012. "Exponential L\'evy-type models with stochastic volatility and stochastic jump-intensity," Papers 1205.2398, arXiv.org, revised Jul 2013.
    14. Katerina Simons, 1997. "Model error," New England Economic Review, Federal Reserve Bank of Boston, issue Nov, pages 17-28.
    15. Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
    16. David Edelman & Thomas Gillespie, 2000. "The Stochastically Subordinated Poisson Normal Process for Modelling Financial Assets," Annals of Operations Research, Springer, vol. 100(1), pages 133-164, December.
    17. Ballotta, Laura, 2005. "A Lévy process-based framework for the fair valuation of participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 173-196, October.
    18. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    19. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    20. Ata Türkoğlu, 2016. "Normally distributed high-frequency returns: a subordination approach," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 389-409, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:1:d:10.1007_s40745-024-00513-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.