IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v349y2025i3d10.1007_s10479-025-06579-8.html
   My bibliography  Save this article

Refrigerated electric vehicle routing considering time-dependent temperature energy consumption models

Author

Listed:
  • Cesar David Osorio-Castañeda

    (Universidad del Valle)

  • Juan Pablo Orejuela-Cabrera

    (Universidad del Valle)

  • Juan José Bravo-Bastidas

    (Universidad del Valle)

Abstract

This paper introduces a novel model integrating the Traveling Salesman Problem (TSP) with time-dependent cooling energy consumption, considering external temperature variations and including an optimal route start time decision variable to enhance management capacity. Perishable items like fresh food and life science products require efficient cold chain logistics, and using zero-emission electric vehicles offers an eco-friendly alternative but with operational challenges, particularly in energy efficiency and battery autonomy. The main aim of this research is to show that introducing temperature as a time-dependent variable in route design offers a more accurate approximation of energy consumption in a refrigerated fleet that is primarily influenced by the internal–external temperature differential. Results show that considering time-dependent temperature variations provides more accurate refrigeration consumption estimates, with differences up to 16% compared to average temperature models. Refrigeration accounts for about 44% of total energy consumption, with product load and infiltration contributing 80% and 17%, respectively. Optimizing these consumptions significantly alters route planning, highlighting the importance of time-dependent temperature in effective logistics management.

Suggested Citation

  • Cesar David Osorio-Castañeda & Juan Pablo Orejuela-Cabrera & Juan José Bravo-Bastidas, 2025. "Refrigerated electric vehicle routing considering time-dependent temperature energy consumption models," Annals of Operations Research, Springer, vol. 349(3), pages 1817-1854, June.
  • Handle: RePEc:spr:annopr:v:349:y:2025:i:3:d:10.1007_s10479-025-06579-8
    DOI: 10.1007/s10479-025-06579-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-025-06579-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-025-06579-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Antonella Meneghetti & Fabio Dal Magro & Patrizia Simeoni, 2018. "Fostering Renewables into the Cold Chain: How Photovoltaics Affect Design and Performance of Refrigerated Automated Warehouses," Energies, MDPI, vol. 11(5), pages 1-20, April.
    3. Angelo Maiorino & Fabio Petruzziello & Ciro Aprea, 2021. "Refrigerated Transport: State of the Art, Technical Issues, Innovations and Challenges for Sustainability," Energies, MDPI, vol. 14(21), pages 1-55, November.
    4. Congyu Zhao & Kangyin Dong & Farhad Taghizadeh-Hesary, 2023. "Can smart transportation enhance green development efficiency?," Economic Change and Restructuring, Springer, vol. 56(2), pages 825-857, April.
    5. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    6. Kramer, Raphael & Maculan, Nelson & Subramanian, Anand & Vidal, Thibaut, 2015. "A speed and departure time optimization algorithm for the pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 782-787.
    7. Wang, Weiquan & Zhao, Jingyi, 2023. "Partial linear recharging strategy for the electric fleet size and mix vehicle routing problem with time windows and recharging stations," European Journal of Operational Research, Elsevier, vol. 308(2), pages 929-948.
    8. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    9. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    10. Zhichao Ma & Jie Zhang & Huanhuan Wang & Shaochan Gao, 2023. "Optimization of Sustainable Bi-Objective Cold-Chain Logistics Route Considering Carbon Emissions and Customers’ Immediate Demands in China," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    11. Antonella Meneghetti & Luca Monti, 2015. "Greening the food supply chain: an optimisation model for sustainable design of refrigerated automated warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 53(21), pages 6567-6587, November.
    12. Antonella Meneghetti & Sara Ceschia, 2020. "Energy-efficient frozen food transports: the Refrigerated Routing Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 58(14), pages 4164-4181, July.
    13. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    14. Benyamin Moghaddasi & Amir Salar Ghafari Majid & Zahra Mohammadnazari & Amir Aghsami & Masoud Rabbani, 2023. "A green routing-location problem in a cold chain logistics network design within the Balanced Score Card pillars in fuzzy environment," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-33, July.
    15. Zhao, Chuan & Ma, Xuying & Wang, Kun, 2022. "The electric vehicle promotion in the cold-chain logistics under two-sided support policy: An evolutionary game perspective," Transport Policy, Elsevier, vol. 121(C), pages 14-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baohua Zhang & Jihad Mohammad, 2024. "Sustainability of Perishable Food Cold Chain Logistics: A Systematic Literature Review," SAGE Open, , vol. 14(3), pages 21582440241, September.
    2. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    4. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    5. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    6. Liu, Yiming & Yu, Yang & Baldacci, Roberto & Tang, Jiafu & Sun, Wei, 2025. "Optimizing carbon emissions in green logistics for time-dependent routing," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    7. Singh, Nitish & Dang, Quang-Vinh & Akcay, Alp & Adan, Ivo & Martagan, Tugce, 2022. "A matheuristic for AGV scheduling with battery constraints," European Journal of Operational Research, Elsevier, vol. 298(3), pages 855-873.
    8. Nan Ding & Manman Li & Jianming Hao, 2023. "A Two-Phase Approach to Routing a Mixed Fleet with Intermediate Depots," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
    9. Nan Ding & Jingshuai Yang & Zhibin Han & Jianming Hao, 2022. "Electric-Vehicle Routing Planning Based on the Law of Electric Energy Consumption," Mathematics, MDPI, vol. 10(17), pages 1-27, August.
    10. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    11. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Amine Masmoudi, M. & Baldacci, Roberto & Mancini, Simona & Kuo, Yong-Hong, 2024. "Multi-compartment waste collection vehicle routing problem with bin washer," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    13. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    14. Ozgur Kabadurmus & Mehmet S. Erdogan, 2023. "A green vehicle routing problem with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a mathematical model and heuristic approach," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-29, April.
    15. Jing Liao & Jie Tang & Andrea Vinelli & Ruhe Xie, 2024. "Sustainable fresh food cold supply chain (SFC) from a state-of-art literature review to a conceptual framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 30817-30859, December.
    16. Zhenhua Chen & Qiong Chen & Cheng Xue & Yiying Chao, 2025. "PHEV Routing with Hybrid Energy and Partial Charging: Solved via Dantzig–Wolfe Decomposition," Mathematics, MDPI, vol. 13(14), pages 1-29, July.
    17. Meneghetti, Antonella & Dal Magro, Fabio & Romagnoli, Alessandro, 2021. "Renewable energy penetration in food delivery: Coupling photovoltaics with transport refrigerated units," Energy, Elsevier, vol. 232(C).
    18. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    19. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    20. Herbert Kopfer & Benedikt Vornhusen, 2019. "Energy vehicle routing problem for differently sized and powered vehicles," Journal of Business Economics, Springer, vol. 89(7), pages 793-821, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:349:y:2025:i:3:d:10.1007_s10479-025-06579-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.