IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v349y2025i3d10.1007_s10479-025-06549-0.html
   My bibliography  Save this article

Characterizations of the $$\textbf{u}$$ u -prenucleolus by dually- $$\textbf{u}$$ u -essential coalitions

Author

Listed:
  • Zsófia Dornai

    (HUN-REN Centre for Economic and Regional Studies, Institute of Economics
    Budapest University of Technology and Economics)

  • Miklós Pintér

    (Corvinus University of Budapest
    HUN-REN-BME-BCE Quantum Technology Research Group)

Abstract

We extend the theory of TU-games with utility functions, which is a generalization of TU-games with restricted cooperation, to include dual games. By using the theory of dual games, we define dually- $$\textbf{u}$$ u -essential coalitions and show that they characterize the $$\textbf{u}$$ u -prenucleolus of $$\textbf{u}$$ u -balanced games. Additionally, we demonstrate that the intersection of $$\textbf{u}$$ u -essential and dually- $$\textbf{u}$$ u -essential coalitions also forms a characterization set for the $$\textbf{u}$$ u -prenucleolus, provided that the $$\textbf{u}$$ u -least-core is a proper subset of the $$\textbf{u}$$ u -core.

Suggested Citation

  • Zsófia Dornai & Miklós Pintér, 2025. "Characterizations of the $$\textbf{u}$$ u -prenucleolus by dually- $$\textbf{u}$$ u -essential coalitions," Annals of Operations Research, Springer, vol. 349(3), pages 1575-1607, June.
  • Handle: RePEc:spr:annopr:v:349:y:2025:i:3:d:10.1007_s10479-025-06549-0
    DOI: 10.1007/s10479-025-06549-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-025-06549-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-025-06549-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jos A. M. Potters & Stef H. Tijs, 1992. "The Nucleolus of a Matrix Game and Other Nucleoli," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 164-174, February.
    2. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(4), pages 1087-1109, December.
    3. Hamers, Herbert & Klijn, Flip & Solymosi, Tamas & Tijs, Stef & Vermeulen, Dries, 2003. "On the nucleolus of neighbor games," European Journal of Operational Research, Elsevier, vol. 146(1), pages 1-18, April.
    4. Maschler, M. & Potters, J.A.M. & Tijs, S.H., 1992. "The general nucleolus and the reduced game property," Other publications TiSEM ab187dab-1b5b-40c3-a673-8, Tilburg University, School of Economics and Management.
    5. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions (extended version)," CERS-IE WORKING PAPERS 1914, Institute of Economics, Centre for Economic and Regional Studies.
    6. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. D. Granot & F. Granot & W. R. Zhu, 1998. "Characterization sets for the nucleolus," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 359-374.
    8. Potters, J.A.M. & Tijs, S.H., 1992. "The nucleolus of a matrix game and other nucleoli," Other publications TiSEM ae3402e7-bd19-494b-b0a1-f, Tilburg University, School of Economics and Management.
    9. Maschler, M & Potters, J A M & Tijs, S H, 1992. "The General Nucleolus and the Reduced Game Property," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(1), pages 85-106.
    10. Morton Davis & Michael Maschler, 1965. "The kernel of a cooperative game," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 12(3), pages 223-259, September.
    11. Solymosi, Tamas & Raghavan, T. E. S. & Tijs, Stef, 2005. "Computing the nucleolus of cyclic permutation games," European Journal of Operational Research, Elsevier, vol. 162(1), pages 270-280, April.
    12. Zsófia Dornai & Miklós Pintér, 2024. "TU-games with utilities: the prenucleolus and its characterization set," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(3), pages 1005-1032, September.
    13. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    14. Michael Maschler & Jos Potters & Hans Reijnierse, 2010. "The nucleolus of a standard tree game revisited: a study of its monotonicity and computational properties," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 89-104, March.
    15. Peter Sudhölter, 1996. "The Modified Nucleolus as Canonical Representation of Weighted Majority Games," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 734-756, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zsófia Dornai & Miklós Pintér, 2024. "TU-games with utilities: the prenucleolus and its characterization set," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(3), pages 1005-1032, September.
    2. Rodica Brânzei & Tamás Solymosi & Stef Tijs, 2005. "Strongly essential coalitions and the nucleolus of peer group games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(3), pages 447-460, September.
    3. Márton Benedek & Jörg Fliege & Tri-Dung Nguyen, 2020. "Finding and verifying the nucleolus of cooperative games," CERS-IE WORKING PAPERS 2021, Institute of Economics, Centre for Economic and Regional Studies.
    4. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions (extended version)," CERS-IE WORKING PAPERS 1914, Institute of Economics, Centre for Economic and Regional Studies.
    5. Tamás Solymosi, 2019. "Weighted nucleoli and dually essential coalitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(4), pages 1087-1109, December.
    6. Tamas Solymosi & Balazs Sziklai, 2015. "Universal Characterization Sets for the Nucleolus in Balanced Games," CERS-IE WORKING PAPERS 1512, Institute of Economics, Centre for Economic and Regional Studies.
    7. Michael Maschler, 2004. "Encouraging a Coalition Formation," Discussion Paper Series dp392, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    8. Potters, Jos & Sudholter, Peter, 1999. "Airport problems and consistent allocation rules," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 83-102, July.
    9. Montero, Maria, 2006. "Noncooperative foundations of the nucleolus in majority games," Games and Economic Behavior, Elsevier, vol. 54(2), pages 380-397, February.
    10. Ogryczak, Wlodzimierz, 1997. "On the lexicographic minimax approach to location problems," European Journal of Operational Research, Elsevier, vol. 100(3), pages 566-585, August.
    11. Eijffinger, S.C.W. & Gruijters, A.P.D., 1989. "On the effectiveness of daily interventions by the Deutsche Bundesbank and the federal reserve system in the U.S. Dollar-Deutsche Mark exchange market," Other publications TiSEM cd65eff1-5f9e-4262-8f38-b, Tilburg University, School of Economics and Management.
    12. Pedro Calleja & Francesc Llerena & Peter Sudhölter, 2020. "Monotonicity and Weighted Prenucleoli: A Characterization Without Consistency," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1056-1068, August.
    13. Eijffinger, Sylvester & van Rixtel, Adrian, 1992. "The Japanese financial system and monetary policy: a descriptive review," Japan and the World Economy, Elsevier, vol. 4(4), pages 291-309, December.
    14. D. Granot & H. Hamers & J. Kuipers & M. Maschler, 2004. "Chinese Postman Games on a Class of Eulerian Graphs," Discussion Paper Series dp366, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    15. Slikker, Marco & Norde, Henk, 2011. "The monoclus of a coalitional game," Games and Economic Behavior, Elsevier, vol. 71(2), pages 420-435, March.
    16. Fromen, Bastian, 1997. "Reducing the number of linear programs needed for solving the nucleolus problem of n-person game theory," European Journal of Operational Research, Elsevier, vol. 98(3), pages 626-636, May.
    17. Francesc Llerena (Universitat Rovira i Virgili - CREIP) & Marina Nunez (Universitat de Barcelona) & Carles Rafels (Universitat de Barcelona), 2012. "An axiomatization of the nucleolus of the assignment game," Working Papers in Economics 286, Universitat de Barcelona. Espai de Recerca en Economia.
    18. Nguyen, Tri-Dung & Thomas, Lyn, 2016. "Finding the nucleoli of large cooperative games," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1078-1092.
    19. repec:has:discpr:1321 is not listed on IDEAS
    20. Holger I. Meinhardt, 2024. "On the Replication of the Pre-kernel and Related Solutions," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 871-946, August.
    21. A. Estévez-Fernández & P. Borm & M. G. Fiestras-Janeiro & M. A. Mosquera & E. Sánchez-Rodríguez, 2017. "On the 1-nucleolus," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 309-329, October.
      • Estévez-Fernández , M.A. & Borm, Peter & Fiestras, & Mosquera, & Sanchez,, 2017. "On the 1-nucleolus," Other publications TiSEM a8ce6687-c87a-4131-98f7-3, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:349:y:2025:i:3:d:10.1007_s10479-025-06549-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.