IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-023-05400-8.html
   My bibliography  Save this article

Forecasting oil price in times of crisis: a new evidence from machine learning versus deep learning models

Author

Listed:
  • Haithem Awijen

    (Inseec Grande École, Omnes Education Group)

  • Hachmi Ben Ameur

    (Inseec Grande École, Omnes Education Group)

  • Zied Ftiti

    (OCRE Research Laboratory)

  • Waël Louhichi

    (ESSCA School of Management)

Abstract

This study investigates oil price forecasting during a time of crisis, from December 2007 to December 2021. As the oil market has experienced various shocks (exogenous versus endogenous), modelling and forecasting its prices dynamics become more complex based on conventional (econometric and structural) models. A new strand of literature has been attracting more attention during the last decades dealing with artificial intelligence methods. However, this literature is unanimous regarding the performance accuracy between machine learning and deep learning methods. We aim in this study to contribute to this literature by investigating the oil price forecasting based on these two approaches. Based on the stylized facts of oil prices dynamics, we select the support vector machine and long short-term memory approach, as two main models of Machine Learning and deep learning methods, respectively. Our findings support the superiority of the Deep Learning method compared to the Machine Learning approach. Interestingly, our results show that the Deep LSTM-prediction has a close pattern to the observed oil prices, demonstrating robust fitting accuracy at mid-to-long forecast horizons during crisis events. However, our results show that SVM machine learning has poor memory ability to establish a clearer understanding of time-dependent volatility and the dynamic co-movements between actual and predicted data. Moreover, our results show that the power of SVM to learn for long-term predictions is reduced, which potentially lead to distortions of forecasting performance.

Suggested Citation

  • Haithem Awijen & Hachmi Ben Ameur & Zied Ftiti & Waël Louhichi, 2025. "Forecasting oil price in times of crisis: a new evidence from machine learning versus deep learning models," Annals of Operations Research, Springer, vol. 345(2), pages 979-1002, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-023-05400-8
    DOI: 10.1007/s10479-023-05400-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05400-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05400-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salisu, Afees A. & Fasanya, Ismail O., 2013. "Modelling oil price volatility with structural breaks," Energy Policy, Elsevier, vol. 52(C), pages 554-562.
    2. Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    4. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    5. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2015. "Does data frequency matter for the impact of forward premium on spot exchange rate?," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 45-53.
    6. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    7. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    8. John Elder & Apostolos Serletis, 2010. "Oil Price Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
    9. Pathan, Refat Khan & Biswas, Munmun & Khandaker, Mayeen Uddin, 2020. "Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Sami Ben Jabeur & Rabeh Khalfaoui & Wissal Ben Arfi, 2021. "The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning," Post-Print hal-03797577, HAL.
    11. Fredj Jawadi, Waël Louhichi, Hachmi Ben Ameur, and Zied Ftiti, 2019. "Do Jumps and Co-jumps Improve Volatility Forecasting of Oil and Currency Markets?," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    12. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    13. Ftiti, Zied & Hadhri, Sinda, 2019. "Can economic policy uncertainty, oil prices, and investor sentiment predict Islamic stock returns? A multi-scale perspective," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 40-55.
    14. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    15. Malikov, Emir, 2016. "Dynamic responses to oil price shocks: Conditional vs unconditional (a)symmetry," Economics Letters, Elsevier, vol. 139(C), pages 31-35.
    16. Don Bredin & John Elder & Stilianos Fountas, 2010. "The Effects of Uncertainty about Oil Prices in G-7," Working Papers 200840, Geary Institute, University College Dublin.
    17. Salisu, Afees A. & Ebuh, Godday U. & Usman, Nuruddeen, 2020. "Revisiting oil-stock nexus during COVID-19 pandemic: Some preliminary results," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 280-294.
    18. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    19. McKenzie, Jordi, 2011. "Mean absolute percentage error and bias in economic forecasting," Economics Letters, Elsevier, vol. 113(3), pages 259-262.
    20. Akhtaruzzaman, Md & Boubaker, Sabri & Chiah, Mardy & Zhong, Angel, 2021. "COVID−19 and oil price risk exposure," Finance Research Letters, Elsevier, vol. 42(C).
    21. Salisu, Afees A. & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil prices over 150 years: The role of tail risks," Resources Policy, Elsevier, vol. 75(C).
    22. Zhang, Wenting & Hamori, Shigeyuki, 2021. "Crude oil market and stock markets during the COVID-19 pandemic: Evidence from the US, Japan, and Germany," International Review of Financial Analysis, Elsevier, vol. 74(C).
    23. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    24. Olubusoye, Olusanya E & Yaya, OlaOluwa S. & Ogbonna, Ahamuefula, 2021. "An Information-Based Index of Uncertainty and the predictability of Energy Prices," MPRA Paper 109839, University Library of Munich, Germany.
    25. Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
    26. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    27. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    28. Nourali, Hamidreza & Osanloo, Morteza, 2019. "Mining capital cost estimation using Support Vector Regression (SVR)," Resources Policy, Elsevier, vol. 62(C), pages 527-540.
    29. Mensi, Walid & Lee, Yun-Jung & Vinh Vo, Xuan & Yoon, Seong-Min, 2021. "Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil Consumers? Evidence from an asymmetric MF-DFA approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    30. Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
    31. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    32. Dutta, Anupam & Das, Debojyoti & Jana, R.K. & Vo, Xuan Vinh, 2020. "COVID-19 and oil market crash: Revisiting the safe haven property of gold and Bitcoin," Resources Policy, Elsevier, vol. 69(C).
    33. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Mariem Nsaibi, 2023. "Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 663-687, August.
    2. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    3. Tarek Bouazizi & Mongi Lassoued & Zouhaier Hadhek, 2021. "Oil Price Volatility Models during Coronavirus Crisis: Testing with Appropriate Models Using Further Univariate GARCH and Monte Carlo Simulation Models," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 281-292.
    4. Conlon, Thomas & Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2024. "Seeking a shock haven: Hedging extreme upward oil price changes," International Review of Financial Analysis, Elsevier, vol. 94(C).
    5. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    6. Le, Thai-Ha & Le, Anh Tu & Le, Ha-Chi, 2021. "The historic oil price fluctuation during the Covid-19 pandemic: What are the causes?," Research in International Business and Finance, Elsevier, vol. 58(C).
    7. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    8. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    9. Liu, Zongming & Shi, Wenhui, 2024. "Oil price disaster risk, macroeconomic dynamics and monetary policy," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    10. Chen, Haixin & Liu, Yancheng & Li, Xiangjie & Gu, Xiang & Fan, Kun, 2024. "Oil market regulatory: An ensembled model for prediction," Finance Research Letters, Elsevier, vol. 67(PA).
    11. Kou, Mingting & Zhang, Menglin & Yang, Yuanqi & Shao, Hanqing, 2024. "Energy finance research: What happens beneath the literature?," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    12. Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
    13. Mohammad Zoynul Abedin & Mahmudul Hasan Moon & M. Kabir Hassan & Petr Hajek, 2025. "Deep learning-based exchange rate prediction during the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 345(2), pages 1335-1386, February.
    14. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    15. Nguyen, Bao H. & Okimoto, Tatsuyoshi & Tran, Trung Duc, 2022. "Uncertainty-dependent and sign-dependent effects of oil market shocks," Journal of Commodity Markets, Elsevier, vol. 26(C).
    16. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    17. Peipei, Wang & James, William, 2024. "Predicting oil price fluctuations: Integrating external indicators and advanced regression techniques," Resources Policy, Elsevier, vol. 97(C).
    18. Ma, Xiaohan, 2023. "Oil uncertainty and the price-cost markup: Evidence from U.S. data," Energy Economics, Elsevier, vol. 124(C).
    19. Bermpei, Theodora & Karadimitropoulou, Aikaterini & Triantafyllou, Athanasios & Alshalahi, Jebreel, 2023. "Does commodity price uncertainty matter for the cost of credit? Evidence from developing and advanced economies," Journal of Commodity Markets, Elsevier, vol. 29(C).
    20. Mehmet Balcilar & Zeynel Abidin Ozdemir, 2017. "The nexus between the oil price and its volatility in a stochastic volatility in mean model with time-varying parameters," Working Papers 15-33, Eastern Mediterranean University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-023-05400-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.