IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v238y2016i1p449-47310.1007-s10479-015-2092-1.html
   My bibliography  Save this article

Short-term balancing of supply and demand in an electricity system: forecasting and scheduling

Author

Listed:
  • Jeanne Aslak Petersen
  • Ditte Heide-Jørgensen
  • Nina Detlefsen
  • Trine Boomsma

Abstract

Until recently, the modelling of electricity system operations has mainly focused on hour-by-hour management. However, with the introduction of renewable energy sources such as wind power, fluctuations within the hour result in imbalances between supply and demand that are undetectable with an hourly time resolution. Ramping restrictions on production units and transmission lines contribute further to these imbalances. In this paper, we therefore propose a model for optimising electricity system operations within the hour. Taking a social welfare perspective, the model aims at reducing intra-hour costs by optimally activating so-called manual reserves based on forecasted imbalances. Since manual reserves are significantly less expensive than automatic reserves, we expect a considerable reduction in total costs of balancing. We illustrate our model in a Danish case study and investigate the effect of an expected increase in installed wind capacity. We find that the balancing costs do not outweigh the benefits of the inexpensive wind power, and that the savings from activating manual reserves are even larger for the high wind capacity case. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Jeanne Aslak Petersen & Ditte Heide-Jørgensen & Nina Detlefsen & Trine Boomsma, 2016. "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 449-473, March.
  • Handle: RePEc:spr:annopr:v:238:y:2016:i:1:p:449-473:10.1007/s10479-015-2092-1
    DOI: 10.1007/s10479-015-2092-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-015-2092-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-015-2092-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony Papavasiliou & Shmuel S. Oren, 2013. "Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network," Operations Research, INFORMS, vol. 61(3), pages 578-592, June.
    2. Bunn, Derek W. & Paschentis, Spiros N., 1986. "Development of a stochastic model for the economic dispatch of electric power," European Journal of Operational Research, Elsevier, vol. 27(2), pages 179-191, October.
    3. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    4. Òscar Jordà & Massimiliano Marcellino, 2010. "Path forecast evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 635-662.
    5. Ralf Gollmer & Matthias Nowak & Werner Römisch & Rüdiger Schultz, 2000. "Unit commitment in power generation – a basic model and some extensions," Annals of Operations Research, Springer, vol. 96(1), pages 167-189, November.
    6. F.-Javier Heredia & Marcos Rider & Cristina Corchero, 2012. "A stochastic programming model for the optimal electricity market bid problem with bilateral contracts for thermal and combined cycle units," Annals of Operations Research, Springer, vol. 193(1), pages 107-127, March.
    7. PAPAVASILIOU, Anthony & OREN, Schmuel S., 2013. "Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network," LIDAM Reprints CORE 2500, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Geoffrey Pritchard & Golbon Zakeri & Andrew Philpott, 2010. "A Single-Settlement, Energy-Only Electric Power Market for Unpredictable and Intermittent Participants," Operations Research, INFORMS, vol. 58(4-part-2), pages 1210-1219, August.
    9. Matthias Nowak & Werner Römisch, 2000. "Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty," Annals of Operations Research, Springer, vol. 100(1), pages 251-272, December.
    10. Gerard Doorman & Bjørn Nygreen, 2003. "Market Price Calculations in Restructured Electricity Markets," Annals of Operations Research, Springer, vol. 124(1), pages 49-67, November.
    11. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeanne Aslak Petersen & Ditte Mølgård Heide-Jørgensen & Nina Kildegaard Detlefsen & Trine Krogh Boomsma, 2016. "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 449-473, March.
    2. Heejung Park, 2022. "A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework," Energies, MDPI, vol. 15(17), pages 1-22, August.
    3. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
    4. Hohl, Cody & Lo Prete, Chiara & Radhakrishnan, Ashish & Webster, Mort, 2023. "Intraday markets, wind integration and uplift payments in a regional U.S. power system," Energy Policy, Elsevier, vol. 175(C).
    5. Hélène Le Cadre & Anthony Papavasiliou & Yves Smeers, 2015. "Wind Farm Portfolio Optimization under Network Capacity Constraints," Post-Print hal-01007992, HAL.
    6. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
    7. Jianqiu Huang & Kai Pan & Yongpei Guan, 2021. "Multistage Stochastic Power Generation Scheduling Co-Optimizing Energy and Ancillary Services," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 352-369, January.
    8. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    9. Schulze, Tim & Grothey, Andreas & McKinnon, Ken, 2017. "A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 247-259.
    10. Daraeepour, Ali & Patino-Echeverri, Dalia & Conejo, Antonio J., 2019. "Economic and environmental implications of different approaches to hedge against wind production uncertainty in two-settlement electricity markets: A PJM case study," Energy Economics, Elsevier, vol. 80(C), pages 336-354.
    11. Melamed, Michal & Ben-Tal, Aharon & Golany, Boaz, 2018. "A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source," Renewable Energy, Elsevier, vol. 118(C), pages 909-917.
    12. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    13. Noori, Ehsan & Khazaei, Ehsan & Tavaro, Mehdi & Bardideh, Farhad, 2019. "Economically Operation of Power Utilities Base on MILP Approach," MPRA Paper 95910, University Library of Munich, Germany.
    14. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    15. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    16. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    17. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    18. De Vos, K. & Stevens, N. & Devolder, O. & Papavasiliou, A. & Hebb, B. & Matthys-Donnadieu, J., 2019. "Dynamic dimensioning approach for operating reserves: Proof of concept in Belgium," Energy Policy, Elsevier, vol. 124(C), pages 272-285.
    19. Trine K. Boomsma, 2019. "Comments on: A comparative study of time aggregation techniques in relation to power capacity-expansion modeling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 406-409, October.
    20. Majid Al-Gwaiz & Xiuli Chao & Owen Q. Wu, 2017. "Understanding How Generation Flexibility and Renewable Energy Affect Power Market Competition," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 114-131, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:238:y:2016:i:1:p:449-473:10.1007/s10479-015-2092-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.