IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v167y2009i1p353-36810.1007-s10479-008-0338-x.html
   My bibliography  Save this article

Single facility location and relocation problem with time dependent weights and discrete planning horizon

Author

Listed:
  • Reza Farahani
  • Zvi Drezner
  • Nasrin Asgari

Abstract

In this paper a single facility location problem with multiple relocation opportunities is investigated. The weight associated with each demand point is a known function of time. We consider either rectilinear, or squared Euclidean, or Euclidean distances. Relocations can take place at pre-determined times. The objective function is to minimize the total location and relocation costs. An algorithm which finds the optimal locations, relocation times and the total cost, for all three types of distance measurements and various weight functions, is developed. Locations are found using constant weights, and relocations times are the solution to a Dynamic Programming or Binary Integer Programming (BIP) model. The time horizon can be finite or infinite. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Reza Farahani & Zvi Drezner & Nasrin Asgari, 2009. "Single facility location and relocation problem with time dependent weights and discrete planning horizon," Annals of Operations Research, Springer, vol. 167(1), pages 353-368, March.
  • Handle: RePEc:spr:annopr:v:167:y:2009:i:1:p:353-368:10.1007/s10479-008-0338-x
    DOI: 10.1007/s10479-008-0338-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0338-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0338-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erlenkotter, Donald, 1981. "A comparative study of approaches to dynamic location problems," European Journal of Operational Research, Elsevier, vol. 6(2), pages 133-143, February.
    2. O. Berman & B. LeBlanc, 1984. "Location-Relocation of Mobile Facilities on a Stochastic Network," Transportation Science, INFORMS, vol. 18(4), pages 315-330, November.
    3. Dennis J. Sweeney & Ronad L. Tatham, 1976. "An Improved Long-Run Model for Multiple Warehouse Location," Management Science, INFORMS, vol. 22(7), pages 748-758, March.
    4. A J Scott, 1971. "Dynamic Location-Allocation Systems: Some Basic Planning Strategies," Environment and Planning A, , vol. 3(1), pages 73-82, March.
    5. Campbell, James F., 1990. "Locating transportation terminals to serve an expanding demand," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 173-192, June.
    6. Tony J. Van Roy & Donald Erlenkotter, 1982. "A Dual-Based Procedure for Dynamic Facility Location," Management Science, INFORMS, vol. 28(10), pages 1091-1105, October.
    7. E S Sheppard, 1974. "A Conceptual Framework for Dynamic Location—Allocation Analysis," Environment and Planning A, , vol. 6(5), pages 547-564, October.
    8. Gunawardane, Gamini, 1982. "Dynamic versions of set covering type public facility location problems," European Journal of Operational Research, Elsevier, vol. 10(2), pages 190-195, June.
    9. VAN ROY, Tony J. & ERLENKOTTER, Donald, 1982. "A dual-based procedure for dynamic facility location," LIDAM Reprints CORE 490, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Ishwar Murthy, 1993. "Solving the multiperiod assignment problem with start‐up costs using dual ascent," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(3), pages 325-344, April.
    11. James G. Morris, 1981. "Convergence of the Weiszfeld Algorithm for Weber Problems Using a Generalized “Distance” Function," Operations Research, INFORMS, vol. 29(1), pages 37-48, February.
    12. Zvi Drezner & G. O. Wesolowsky, 1991. "Facility location when demand is time dependent," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 763-777, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sizhe & Cardin, Michel-Alexandre, 2017. "Flexibility and real options analysis in emergency medical services systems using decision rules and multi-stage stochastic programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 120-140.
    2. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    3. Liying Yan & Manel Grifoll & Hongxiang Feng & Pengjun Zheng & Chunliang Zhou, 2022. "Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    4. Adarsh Kumar Singh & Nachiappan Subramanian & Kulwant Singh Pawar & Ruibin Bai, 2018. "Cold chain configuration design: location-allocation decision-making using coordination, value deterioration, and big data approximation," Annals of Operations Research, Springer, vol. 270(1), pages 433-457, November.
    5. Güden, Hüseyin & Süral, Haldun, 2014. "Locating mobile facilities in railway construction management," Omega, Elsevier, vol. 45(C), pages 71-79.
    6. Shahzad Bhatti & Michael Lim & Ho-Yin Mak, 2015. "Alternative fuel station location model with demand learning," Annals of Operations Research, Springer, vol. 230(1), pages 105-127, July.
    7. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    8. S. Nobakhtian & A. Raeisi Dehkordi, 2018. "A fast algorithm for the rectilinear distance location problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 81-98, August.
    9. Gajanan B. Panchal & Hassan Mirzahosseinian & Sunil Tiwari & Ajay Kumar & Sachin Kumar Mangla, 2023. "Supply chain network redesign problem for major beverage organization in ASEAN region," Annals of Operations Research, Springer, vol. 324(1), pages 1067-1098, May.
    10. Dunke, Fabian & Heckmann, Iris & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2018. "Time traps in supply chains: Is optimal still good enough?," European Journal of Operational Research, Elsevier, vol. 264(3), pages 813-829.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    2. Current, John & Ratick, Samuel & ReVelle, Charles, 1998. "Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach," European Journal of Operational Research, Elsevier, vol. 110(3), pages 597-609, November.
    3. Xin Wang & Michael K. Lim & Yanfeng Ouyang, 2017. "A Continuum Approximation Approach to the Dynamic Facility Location Problem in a Growing Market," Transportation Science, INFORMS, vol. 51(1), pages 343-357, February.
    4. Vatsa, Amit Kumar & Ghosh, Diptesh, 2014. "Tabu Search for Multi-Period Facility Location: Uncapacitated Problem with an Uncertain Number of Servers," IIMA Working Papers WP2014-11-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Vatsa, Amit Kumar, 2014. "Multi-Period Facility Location Problem with an Uncertain Number of Servers," IIMA Working Papers WP2014-02-06, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    7. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    8. Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
    9. Russell Halper & S. Raghavan, 2011. "The Mobile Facility Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 413-434, August.
    10. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "The Dynamic Uncapacitated Hub Location Problem," Transportation Science, INFORMS, vol. 45(1), pages 18-32, February.
    12. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    13. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    14. Shahzad Bhatti & Michael Lim & Ho-Yin Mak, 2015. "Alternative fuel station location model with demand learning," Annals of Operations Research, Springer, vol. 230(1), pages 105-127, July.
    15. Seifert, Ralf W. & Langenberg, Kerstin U., 2011. "Managing business dynamics with adaptive supply chain portfolios," European Journal of Operational Research, Elsevier, vol. 215(3), pages 551-562, December.
    16. Antunes, Antonio & Peeters, Dominique, 2000. "A dynamic optimization model for school network planning," Socio-Economic Planning Sciences, Elsevier, vol. 34(2), pages 101-120, June.
    17. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    18. Melachrinoudis, Emanuel & Min, Hokey, 2000. "The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach," European Journal of Operational Research, Elsevier, vol. 123(1), pages 1-15, May.
    19. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    20. Alberto Ceselli & Federico Liberatore & Giovanni Righini, 2009. "A computational evaluation of a general branch-and-price framework for capacitated network location problems," Annals of Operations Research, Springer, vol. 167(1), pages 209-251, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:167:y:2009:i:1:p:353-368:10.1007/s10479-008-0338-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.