On estimation of nonparametric regression models with autoregressive and moving average errors
Author
Abstract
Suggested Citation
DOI: 10.1007/s10463-023-00882-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Richard A. Davis & William T. M. Dunsmuir, 1997. "Least Absolute Deviation Estimation for Regression with ARMA Errors," Journal of Theoretical Probability, Springer, vol. 10(2), pages 481-497, April.
- Qiu, D. & Shao, Q. & Yang, L., 2013. "Efficient inference for autoregressive coefficients in the presence of trends," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 40-53.
- Mokkadem, Abdelkader, 1988. "Mixing properties of ARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 29(2), pages 309-315, September.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors,"
Papers
1212.6906, arXiv.org, revised Jan 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers 76/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers CWP76/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
- Roussas, George G. & Tran, Lanh T. & Ioannides, D. A., 1992. "Fixed design regression for time series: Asymptotic normality," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 262-291, February.
- Q. Shao & L. J. Yang, 2011. "Autoregressive coefficient estimation in nonparametric analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 587-597, November.
- Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
- Maria Durbán & Iain D. Currie, 2003. "A note on P-spline additive models with correlated errors," Computational Statistics, Springer, vol. 18(2), pages 251-262, July.
- Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
- Zinde-Walsh, Victoria & Galbraith, John W., 1991. "Estimation of a linear regression model with stationary ARMA(p, q) errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 333-357, February.
- Peter Hall & Ingrid Van Keilegom, 2003. "Using difference‐based methods for inference in nonparametric regression with time series errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 443-456, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhong, Chen, 2024. "Oracle-efficient estimation and trend inference in non-stationary time series with trend and heteroscedastic ARMA error," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
- Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
- Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
- Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.
- Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
- L. Tang & Q. Shao, 2014. "Efficient Estimation For Periodic Autoregressive Coefficients Via Residuals," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 378-389, July.
- Q. Shao, 2023. "Simultaneous Confidence Band Approach for Comparison of COVID-19 Case Counts," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 372-383, July.
- Benny Ren & Ian Barnett, 2022. "Autoregressive mixture models for clustering time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 918-937, November.
- Michael Wegener & Göran Kauermann, 2008. "Examining heterogeneity in implied equity risk premium using penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 35-56, February.
- Göran Kauermann & Timo Teuber & Peter Flaschel, 2012. "Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression," Computational Economics, Springer;Society for Computational Economics, vol. 39(4), pages 409-427, April.
- Dabo-Niang, Sophie & Guillas, Serge, 2010. "Functional semiparametric partially linear model with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 307-315, February.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013.
"Testing Many Moment Inequalities,"
CeMMAP working papers
65/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Testing many moment inequalities," CeMMAP working papers CWP42/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Testing many moment inequalities," CeMMAP working papers 42/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Testing many moment inequalities," CeMMAP working papers 52/14, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Testing many moment inequalities," CeMMAP working papers CWP52/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers CWP65/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Nie, Yan & Zhang, Guoxing & Zhong, Luhao & Su, Bin & Xi, Xi, 2024. "Urban‒rural disparities in household energy and electricity consumption under the influence of electricity price reform policies," Energy Policy, Elsevier, vol. 184(C).
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Lindh, Thomas & Malmberg, Bo, 2007.
"Demographically based global income forecasts up to the year 2050,"
International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
- Malmberg, Bo & Lindh, Thomas, 2004. "Demographically based global income forecasts up to the year 2050," Arbetsrapport 2004:7, Institute for Futures Studies.
- Julia Eichholz & Thorsten Knauer & Sandra Winkelmann, 2023. "Digital Maturity of Forecasting and its Impact in Times of Crisis," Schmalenbach Journal of Business Research, Springer, vol. 75(4), pages 443-481, December.
- Madden, Gary & Tan, Joachim, 2007.
"Forecasting telecommunications data with linear models,"
Telecommunications Policy, Elsevier, vol. 31(1), pages 31-44, February.
- Madden, Gary G & Tan, Joachim, 2007. "Forecasting telecommunications data with linear models," MPRA Paper 14739, University Library of Munich, Germany.
- repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
- Huijun Guo & Youming Liu, 2019. "Regression estimation under strong mixing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 553-576, June.
- repec:hum:wpaper:sfb649dp2014-067 is not listed on IDEAS
- Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Gao, Jiti & Robinson, Peter M., 2014. "Inference on nonstationary time series with moving mean," LSE Research Online Documents on Economics 66509, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Nonparametric model with correlated errors; Oracally efficient estimation; $$tau$$ τ -Mixing; Splines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:76:y:2024:i:2:d:10.1007_s10463-023-00882-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.