IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v76y2024i2d10.1007_s10463-023-00882-6.html
   My bibliography  Save this article

On estimation of nonparametric regression models with autoregressive and moving average errors

Author

Listed:
  • Qi Zheng

    (University of Louisville)

  • Yunwei Cui

    (Towson University)

  • Rongning Wu

    (Zicklin School of Business, Baruch College)

Abstract

The nonparametric regression model with correlated errors is a powerful tool for time series forecasting. We are interested in the estimation of such a model, where the errors follow an autoregressive and moving average (ARMA) process, and the covariates can also be correlated. Instead of estimating the constituent parts of the model in a sequential fashion, we propose a spline-based method to estimate the mean function and the parameters of the ARMA process jointly. We establish the desirable asymptotic properties of the proposed approach under mild regularity conditions. Extensive simulation studies demonstrate that our proposed method performs well and generates strong evidence supporting the established theoretical results. Our method provides a new addition to the arsenal of tools for analyzing serially correlated data. We further illustrate the practical usefulness of our method by modeling and forecasting the weekly natural gas scraping data for the state of Iowa.

Suggested Citation

  • Qi Zheng & Yunwei Cui & Rongning Wu, 2024. "On estimation of nonparametric regression models with autoregressive and moving average errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(2), pages 235-262, April.
  • Handle: RePEc:spr:aistmt:v:76:y:2024:i:2:d:10.1007_s10463-023-00882-6
    DOI: 10.1007/s10463-023-00882-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-023-00882-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-023-00882-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Richard A. Davis & William T. M. Dunsmuir, 1997. "Least Absolute Deviation Estimation for Regression with ARMA Errors," Journal of Theoretical Probability, Springer, vol. 10(2), pages 481-497, April.
    3. Qiu, D. & Shao, Q. & Yang, L., 2013. "Efficient inference for autoregressive coefficients in the presence of trends," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 40-53.
    4. Mokkadem, Abdelkader, 1988. "Mixing properties of ARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 29(2), pages 309-315, September.
    5. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    6. Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
    7. Roussas, George G. & Tran, Lanh T. & Ioannides, D. A., 1992. "Fixed design regression for time series: Asymptotic normality," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 262-291, February.
    8. Q. Shao & L. J. Yang, 2011. "Autoregressive coefficient estimation in nonparametric analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 587-597, November.
    9. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    10. Maria Durbán & Iain D. Currie, 2003. "A note on P-spline additive models with correlated errors," Computational Statistics, Springer, vol. 18(2), pages 251-262, July.
    11. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    12. Zinde-Walsh, Victoria & Galbraith, John W., 1991. "Estimation of a linear regression model with stationary ARMA(p, q) errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 333-357, February.
    13. Peter Hall & Ingrid Van Keilegom, 2003. "Using difference‐based methods for inference in nonparametric regression with time series errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 443-456, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Chen, 2024. "Oracle-efficient estimation and trend inference in non-stationary time series with trend and heteroscedastic ARMA error," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    2. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    3. Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.
    4. Reiss Philip T. & Huang Lei & Mennes Maarten, 2010. "Fast Function-on-Scalar Regression with Penalized Basis Expansions," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-30, August.
    5. L. Tang & Q. Shao, 2014. "Efficient Estimation For Periodic Autoregressive Coefficients Via Residuals," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 378-389, July.
    6. Benny Ren & Ian Barnett, 2022. "Autoregressive mixture models for clustering time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 918-937, November.
    7. Göran Kauermann & Timo Teuber & Peter Flaschel, 2012. "Exploring US Business Cycles with Bivariate Loops Using Penalized Spline Regression," Computational Economics, Springer;Society for Computational Economics, vol. 39(4), pages 409-427, April.
    8. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    9. Q. Shao, 2023. "Simultaneous Confidence Band Approach for Comparison of COVID-19 Case Counts," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 372-383, July.
    10. Michael Wegener & Göran Kauermann, 2008. "Examining heterogeneity in implied equity risk premium using penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 35-56, February.
    11. Dabo-Niang, Sophie & Guillas, Serge, 2010. "Functional semiparametric partially linear model with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 307-315, February.
    12. Nie, Yan & Zhang, Guoxing & Zhong, Luhao & Su, Bin & Xi, Xi, 2024. "Urban‒rural disparities in household energy and electricity consumption under the influence of electricity price reform policies," Energy Policy, Elsevier, vol. 184(C).
    13. Julia Eichholz & Thorsten Knauer & Sandra Winkelmann, 2023. "Digital Maturity of Forecasting and its Impact in Times of Crisis," Schmalenbach Journal of Business Research, Springer, vol. 75(4), pages 443-481, December.
    14. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    16. Kumar, V. & Sunder, Sarang & Sharma, Amalesh, 2015. "Leveraging Distribution to Maximize Firm Performance in Emerging Markets," Journal of Retailing, Elsevier, vol. 91(4), pages 627-643.
    17. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    18. Garcia-Ferrer, Antonio & Bujosa-Brun, Marcos, 2000. "Forecasting OECD industrial turning points using unobserved components models with business survey data," International Journal of Forecasting, Elsevier, vol. 16(2), pages 207-227.
    19. Xuejun Wang & Yi Wu & Shuhe Hu, 2016. "Exponential probability inequality for $$m$$ m -END random variables and its applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 127-147, February.
    20. Paroissien, Emmanuel, 2020. "Forecasting bulk prices of Bordeaux wines using leading indicators," International Journal of Forecasting, Elsevier, vol. 36(2), pages 292-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:76:y:2024:i:2:d:10.1007_s10463-023-00882-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.