IDEAS home Printed from https://ideas.repec.org/a/scn/wnewec/y2018i4p20-31.html

Прогнозирование инфляции: практика использования синтетических процедур // Inflation Forecasting: The Practice of Using Synthetic Procedures

Author

Listed:
  • E. Balatskiy V.

    (Financial University)

  • M. Yurevich A.

    (Financial University)

  • Е. Балацкий В.

    (Финансовый университет)

  • М. Юревич А.

    (Финансовый университет)

Abstract

The article contains a review of inflation forecasting models, including the most popular class of models as one-factor models: random walk, direct autoregression, recursive autoregression, stochastic volatility with an unobserved component and of the integrated model of autoregression with moving average. Also, we discussed the possibilities of various modifications of models based on the Phillips curve (including the “triangle model”), vector autoregressive models (including the factor-extended model of B. Bernanke’s vector autoregression), dynamic general equilibrium models and neural networks. Further, we considered the comparative advantages of these classes of models. In particular, we revealed a new trend in inflation forecasting, which consists of the introduction of synthetic procedures for private forecasts accounting obtained by different models. An important conclusion of the study is the superiority of expert assessments in comparison with all available models. We have shown that in the conditions of a large number of alternative methods of inflation modelling, the choice of the adequate approach in specific conditions (for example, for the Russian economy of the current period) is a non-trivial procedure. Based on this conclusion, the authors substantiate the thesis that large prognostic possibilities are inherent in the mixed strategies of using different methodological approaches, when implementing different modelling tools at different stages of modelling, in particular, the multifactorial econometric model and the artificial neural network. В статье представлена общая типология моделей прогнозирования инфляции. Подробно рассмотрены однофакторные модели, включая модели случайного блуждания, прямой авторегрессии, рекурсивной авторегрессии, стохастической волатильности с ненаблюдаемой составляющей и интегрированные модели авторегрессии со скользящей средней. Помимо этого, обсуждаются возможности различных модификаций моделей на основе кривой Филлипса (включая «треугольную модель»), векторных авторегрессионных моделей (включая факторно-расширенную модель векторной авторегрессии Б. Бернанке), динамических моделей общего равновесия и нейронных сетей. Рассмотрены сравнительные преимущества указанных классов моделей, выявлен новый тренд в прогнозировании инфляции, состоящий во внедрении синтетических процедур учета частных прогнозов, полученных на основе разных типов моделей. Сделан важный вывод о превосходстве экспертных оценок по сравнению со всеми имеющимися моделями. Важным аспектом сравнения разных классов моделей является зависимость успешности их применения от таких факторов, как величина лагов для объясняющих регрессоров, величина горизонта планирования, тип экономики моделируемой страны и т. д. Авторами показано, что в условиях большого числа альтернативных способов моделирования инфляции выбор наиболее адекватного подхода в конкретных условиях (например, для российской экономики нынешнего периода времени) представляет собой нетривиальную процедуру. Опираясь на данный вывод, авторы обосновывают тезис, согласно которому большие прогностические возможности заложены в смешанных стратегиях использования разных методических подходов, когда на разных стадиях моделирования применяется разный модельный инструментарий, в частности многофакторная эконометрическая модель и искусственная нейронная сеть.

Suggested Citation

  • E. Balatskiy V. & M. Yurevich A. & Е. Балацкий В. & М. Юревич А., 2018. "Прогнозирование инфляции: практика использования синтетических процедур // Inflation Forecasting: The Practice of Using Synthetic Procedures," Мир новой экономики // The world of new economy, Финансовый университет при Правительстве Российской Федерации // Financial University under The Governtment оf The Russian Federation, vol. 12(4), pages 20-31.
  • Handle: RePEc:scn:wnewec:y:2018:i:4:p:20-31
    as

    Download full text from publisher

    File URL: https://wne.fa.ru/jour/article/viewFile/205/197.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurence Ball & N. Gregory Mankiw, 2002. "The NAIRU in Theory and Practice," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 115-136, Fall.
    2. M. Ali Choudhary & Adnan Haider, 2012. "Neural network models for inflation forecasting: an appraisal," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2631-2635, July.
    3. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    4. Razin, Assaf & Yuen, Chi-Wa, 2002. "The 'New Keynesian' Phillips curve: closed economy versus open economy," Economics Letters, Elsevier, vol. 75(1), pages 1-9, March.
    5. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    6. Nariman Behravesh, 1976. "Forecasting inflation: does the method make a difference," Business Review, Federal Reserve Bank of Philadelphia, issue Sep, pages 9-17.
    7. Kajal Lahiri & Yongchen Zhao, 2016. "Determinants of Consumer Sentiment Over Business Cycles: Evidence from the US Surveys of Consumers," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 187-215, December.
    8. Fabio Rumler, 2007. "Estimates of the Open Economy New Keynesian Phillips Curve for Euro Area Countries," Open Economies Review, Springer, vol. 18(4), pages 427-451, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Eickmeier & Katharina Pijnenburg, 2013. "The Global Dimension of Inflation – Evidence from Factor-Augmented Phillips Curves," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 103-122, February.
    2. Toshitaka Sekine, 2009. "Another Look at Global Disinflation," NBER Chapters, in: Financial Globalization, 20th Anniversary Conference, NBER-TCER-CEPR, National Bureau of Economic Research, Inc.
    3. Tea Šestanović & Josip Arnerić, 2021. "Can Recurrent Neural Networks Predict Inflation in Euro Zone as Good as Professional Forecasters?," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
    4. Alexander Mihailov & Fabio Rumler & Johann Scharler, 2011. "The Small Open-Economy New Keynesian Phillips Curve: Empirical Evidence and Implied Inflation Dynamics," Open Economies Review, Springer, vol. 22(2), pages 317-337, April.
    5. Zouhair Ait Benhamou, 2017. "Microfoundations of the New Keynesian Phillips Curve in an Open Emerging Economy," Post-Print hal-02977727, HAL.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2014. "“A multivariate neural network approach to tourism demand forecasting”," AQR Working Papers 201410, University of Barcelona, Regional Quantitative Analysis Group, revised May 2014.
    7. Fabio Rumler, 2006. "The New Keynesian Phillips Curve for Austria – An Extension for the Open Economy," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 55-69.
    8. Marcos Álvarez-Díaz & Rangan Gupta, 2015. "Forecasting the US CPI: Does Nonlinearity Matter?," Working Papers 201512, University of Pretoria, Department of Economics.
    9. Muhammad Nadim Hanif & Khurrum S. Mughal & Javed Iqbal, 2018. "A Thick ANN Model for Forecasting Inflation," SBP Working Paper Series 99, State Bank of Pakistan, Research Department.
    10. Baxa, Jaromír & Plašil, Miroslav & Vašíček, Bořek, 2015. "Changes in inflation dynamics under inflation targeting? Evidence from Central European countries," Economic Modelling, Elsevier, vol. 44(C), pages 116-130.
    11. Tea Šestanović & Josip Arnerić, 2021. "Neural network structure identification in inflation forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 62-79, January.
    12. Katarzyna Budnik & Michal Greszta & Michal Hulej & Marcin Kolasa & Karol Murawski & Michal Rot & Bartosz Rybaczyk & Magdalena Tarnicka, 2009. "The new macroeconometric model of the Polish economy," NBP Working Papers 62, Narodowy Bank Polski.
    13. Bogdan MUNTEANU, 2016. "Youth Unemployment In Eu: A Pressure To Avoid Long Term Social Empoverishment," Europolity – Continuity and Change in European Governance - New Series, Department of International Relations and European Integration, National University of Political Studies and Public Administration, vol. 10(2), pages 1-35.
    14. Luis Eduardo Arango & Carlos Esteban Posada, 2006. "The Time-Varying Long-Run Unemployment Rate: The Colombian Case," Borradores de Economia 389, Banco de la Republica de Colombia.
    15. Mazumder, Sandeep, 2014. "Determinants of the sacrifice ratio: Evidence from OECD and non-OECD countries," Economic Modelling, Elsevier, vol. 40(C), pages 117-135.
    16. A. Malliaris & Mary Malliaris, 2013. "Are oil, gold and the euro inter-related? Time series and neural network analysis," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 1-14, January.
    17. Ionel Tampu Diana Larisa, 2022. "Significant Figures About Romania’S Economic History," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 61-69, December.
    18. Liotti, Giorgio, 2020. "Labour market flexibility, economic crisis and youth unemployment in Italy," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 150-162.
    19. Johanna Posch & Fabio Rumler, 2015. "Semi‐Structural Forecasting of UK Inflation Based on the Hybrid New Keynesian Phillips Curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 145-162, March.
    20. Laurence M. Ball, 2009. "Hysteresis in Unemployment: Old and New Evidence," NBER Working Papers 14818, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:wnewec:y:2018:i:4:p:20-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://worldneweconomy.elpub.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.