IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v12y2022i3p21582440221116338.html
   My bibliography  Save this article

Extreme Weather Influence on Carbon Emissions in Chinese Urban Traffic Environments

Author

Listed:
  • Chao Wang
  • Yongheng Gu
  • Fei Ma
  • Yongping Li

Abstract

As concerns around climate change and global warming intensify, extreme weather events such as heavy rain, blizzards, and smog-induced haze have greatly impacted the commuting travel mode selection of urban residents. Such behavioral shifts have in turn led to changes of the carbon emissions generated from these residents. This paper constructs a “extreme weather ( W )–travel behavior ( B )–carbon emissions ( C )†research framework. Using a multiple logistic regression model, the transportation mode shift model, and the econometric model of urban resident’s travel behavior under the influence of extreme weather conditions were constructed. The marginal effects of weather on residents’ commuter behavior, through the use of transportation type and distance of travel were also obtained. The study found that the overall carbon dioxide emission levels of daily commuting has gradually decreased due to the influence of extreme weather. However, as some travelers still adopted high-emission commuting modes through the use of taxis or ride-sharing services, there was still a slight increase in CCDE levels in certain extreme weather contexts. In particular, when haze was prevalent, vehicle restriction policies only reduced CCDE by 2.18%, while the remaining 77.83% of total CCDE remaining unchanged. This research provides a key reference point for governmental departments in urban transportation management and environmental protection to formulate policies.

Suggested Citation

  • Chao Wang & Yongheng Gu & Fei Ma & Yongping Li, 2022. "Extreme Weather Influence on Carbon Emissions in Chinese Urban Traffic Environments," SAGE Open, , vol. 12(3), pages 21582440221, August.
  • Handle: RePEc:sae:sagope:v:12:y:2022:i:3:p:21582440221116338
    DOI: 10.1177/21582440221116338
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440221116338
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440221116338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanchun Yi & Yajun Wang & Yaqin Li & Ji Qi, 2021. "Impact of urban density on carbon emissions in China," Applied Economics, Taylor & Francis Journals, vol. 53(53), pages 6153-6165, November.
    2. Cervero, Robert, 1996. "Mixed land-uses and commuting: Evidence from the American Housing Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 361-377, September.
    3. Brand, Christian & Goodman, Anna & Rutter, Harry & Song, Yena & Ogilvie, David, 2013. "Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel," Applied Energy, Elsevier, vol. 104(C), pages 158-169.
    4. Wang, Chao & Kim, Yul-Seong & Kim, Chi Yeol, 2021. "Causality between logistics infrastructure and economic development in China," Transport Policy, Elsevier, vol. 100(C), pages 49-58.
    5. Peng Chen & Jiquan Zhang & Xinyu Jiang & Xingpeng Liu & Yulong Bao & Yingyue Sun, 2012. "Scenario Simulation-Based Assessment of Trip Difficulty for Urban Residents under Rainstorm Waterlogging," IJERPH, MDPI, vol. 9(6), pages 1-18, May.
    6. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden," Transport Policy, Elsevier, vol. 41(C), pages 147-158.
    7. Böcker, Lars & Prillwitz, Jan & Dijst, Martin, 2013. "Climate change impacts on mode choices and travelled distances: a comparison of present with 2050 weather conditions for the Randstad Holland," Journal of Transport Geography, Elsevier, vol. 28(C), pages 176-185.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chao & Yang, Jae-Jang & Zhang, Xinyu & Lee, Yong-Ki, 2024. "Does value orientation predict buying intention of new energy vehicles?," Transport Policy, Elsevier, vol. 153(C), pages 68-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurici Ruiz-Pérez & Joana Maria Seguí-Pons, 2020. "Transport Mode Choice for Residents in a Tourist Destination: The Long Road to Sustainability (the Case of Mallorca, Spain)," Sustainability, MDPI, vol. 12(22), pages 1-31, November.
    2. Chen Cao & Feng Zhen & Xianjin Huang, 2022. "How Does Perceived Neighborhood Environment Affect Commuting Mode Choice and Commuting CO 2 Emissions? An Empirical Study of Nanjing, China," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    3. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    4. Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.
    5. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    6. Kyung Hwan Lee & Eun Jeong Ko, 2014. "Relationships between neighbourhood environments and residents' bicycle mode choice: a case study of Seoul," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(3), pages 383-395, November.
    7. Souche, Stéphanie, 2009. "Un exemple d’estimation de la demande de transport urbain," Revue d'économie régionale et urbaine, Editions NecPlus, vol. 2009(04), pages 759-779, December.
    8. Liu Yang & Yuanqing Wang & Yujun Lian & Zhongming Guo & Yuanyuan Liu & Zhouhao Wu & Tieyue Zhang, 2022. "Key Factors, Planning Strategy and Policy for Low-Carbon Transport Development in Developing Cities of China," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    9. Yu Zhao & Prasanna Divigalpitiya, 2024. "Understanding Emission Trends, Regional Distribution Differences, and Synergistic Emission Effects in the Transportation Sector in Terms of Social Factors and Energy Consumption," Sustainability, MDPI, vol. 16(24), pages 1-18, December.
    10. Selima Sultana & Hyojin Kim & Nastaran Pourebrahim & Firoozeh Karimi, 2018. "Geographical Assessment of Low-Carbon Transportation Modes: A Case Study from a Commuter University," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    11. Enayat Mirzaei & Dominique Mignot, 2021. "An Empirical Analysis of Mode Choice Decision for Utilitarian and Hedonic Trips: Evidence from Iran," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    12. Pierre Filion, 2001. "Suburban Mixed-Use Centres and Urban Dispersion: What Difference do they Make?," Environment and Planning A, , vol. 33(1), pages 141-160, January.
    13. Haseeb, Attiya & Mitra, Raktim, 2024. "Travel behaviour changes among young adults and associated implications for social sustainability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    14. Andrea CIRILLI & Paolo VENERI, 2010. "Spatial Structure and CO2 Emissions Due to Commuting: an Analysis on Italian Urban Areas," Working Papers 353, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    15. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu (Jason) & Yang, Jiawen, 2023. "Built environment interventions for emission mitigation: A machine learning analysis of travel-related CO2 in a developing city," Journal of Transport Geography, Elsevier, vol. 110(C).
    16. Mindali, Orit & Raveh, Adi & Salomon, Ilan, 2004. "Urban density and energy consumption: a new look at old statistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 143-162, February.
    17. Huang, Qingbo & Zhang, Xiaohan & Li, Yan, 2023. "Study on the economic effects of China and ASEAN countries from the New International Land-Sea Trade Corridor," Transport Policy, Elsevier, vol. 139(C), pages 123-135.
    18. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    19. Gao, Jie & Kamphuis, Carlijn B.M. & Helbich, Marco & Ettema, Dick, 2020. "What is ‘neighborhood walkability’? How the built environment differently correlates with walking for different purposes and with walking on weekdays and weekends," Journal of Transport Geography, Elsevier, vol. 88(C).
    20. Rubin, Ori & Bertolini, Luca, 2016. "Social and environmental sustainability of travelling within family networks," Transport Policy, Elsevier, vol. 52(C), pages 72-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:12:y:2022:i:3:p:21582440221116338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.