IDEAS home Printed from https://ideas.repec.org/a/sae/iimkoz/v5y2016i1p51-62.html
   My bibliography  Save this article

Distressed Elephants: Policy Initiatives for Sustainable Groundwater Management in India

Author

Listed:
  • M. Dinesh Kumar

Abstract

This article reviews the dominant arguments which shaped public policies in the agricultural groundwater sector in India. It also examines the initiatives to arrest groundwater depletion. It is a synthesis of the research carried out by the author over the last two decades and review of the work by others. Following were the arguments that shaped public policies in the agricultural groundwater sector in India, as per the review: high density of farm wells in remote areas increases the transaction cost of metering and charging for electricity on a pro-rata basis, as a tool to control groundwater draft; groundwater economy is controlled by small and marginal farmers, and attempts to regulate it are politically sensitive; and raising power tariff would adversely affect farmers who buy water. Furthermore, the regions with high density of wells do not experience intensive groundwater use; groundwater economy is mainly controlled by large farmers. In water-abundant regions, subsidized power does not reduce the monopoly of water sellers; in water-scarce regions, an increase in power tariff would have only marginal effect on it; and, in semi-arid regions, raising farm power tariff would result in improved efficiency, equity and sustainability in groundwater use and would be socio-economically viable. In water-scarce regions, the large public funds spent for watershed management, dug well recharging and community-based water harvesting produce no positive outcomes. Attempts to introduce electricity pricing or groundwater taxes or water rights are absent. Schemes promoting the use of micro irrigation do raise farm productivity, but leave no incentive among farmers to reduce water use.

Suggested Citation

  • M. Dinesh Kumar, 2016. "Distressed Elephants: Policy Initiatives for Sustainable Groundwater Management in India," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 51-62, January.
  • Handle: RePEc:sae:iimkoz:v:5:y:2016:i:1:p:51-62
    DOI: 10.1177/2277975215617266
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2277975215617266
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2277975215617266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zekri, Slim, 2008. "Using economic incentives and regulations to reduce seawater intrusion in the Batinah coastal area of Oman," Agricultural Water Management, Elsevier, vol. 95(3), pages 243-252, March.
    2. Shah, Tushaar, 2001. "Wells and welfare in the Ganga Basin: Public policy and private initiative in Eastern Uttar Pradesh, India," IWMI Research Reports 44570, International Water Management Institute.
    3. Kumar, Dinesh M. & Ghosh, Shantanu & Patel, Ankit & Singh, Omprakash & Ravindranath, R., 2006. "Rainwater harvesting in India: some critical issues for basin planning and research," IWMI Research Reports H044538, International Water Management Institute.
    4. Shah, Tushaar & Scott, C. & Kishore, A. & Sharma, A., 2003. "Energy-irrigation nexus in South Asia: Improving groundwater conservation and power sector viability," IWMI Research Reports H033885, International Water Management Institute.
    5. Shah, T., 2001. "Wells and welfare in the Ganga Basin: Public policy and private initiative in Eastern Uttar Pradesh, India," IWMI Research Reports H028784, International Water Management Institute.
    6. Kumar, M. Dinesh & Ghosh, Shantanu & Patel, Ankit & Singh, Om Prakash & Ravindranath, R., 2006. "Rainwater harvesting in India: some critical issues for basin planning and research," Land Use and Water Resources Research, University of Newcastle upon Tyne, Centre for Land Use and Water Resources Research, vol. 6, pages 1-17.
    7. M. Dinesh Kumar & Christopher A. Scott & O.P. Singh, 2013. "Can India raise agricultural productivity while reducing groundwater and energy use?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(4), pages 557-573, December.
    8. Giordano, Mark & Villholth, Karen, 2007. "The agricultural groundwater revolution: opportunities and threats to development," IWMI Books, Reports H040039, International Water Management Institute.
    9. Chetan Pandit, 2014. "Environmental over enthusiasm," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(1), pages 110-120, March.
    10. M. Dinesh Kumar & Jos C. van Dam, 2013. "Drivers of change in agricultural water productivity and its improvement at basin scale in developing economies," Water International, Taylor & Francis Journals, vol. 38(3), pages 312-325, May.
    11. Shah, Tushaar & Scott, Christopher A. & Kishore, Avinash & Sharma, Abhishek, 2004. "Energy-irrigation nexus in South Asia: Improving groundwater conservation and power sector viability," IWMI Research Reports 44557, International Water Management Institute.
    12. Kemper, K. E., 2007. "Instruments and institutions for groundwater management," IWMI Books, Reports H040046, International Water Management Institute.
    13. Kumar, M. Dinesh, 2005. "Impact of electricity prices and volumetric water allocation on energy and groundwater demand management:: analysis from Western India," Energy Policy, Elsevier, vol. 33(1), pages 39-51, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahinipati, Chandra Sekhar & Viswanathan, P.K., 2019. "Incentivizing resource efficient technologies in India: Evidence from diffusion of micro-irrigation in the dark zone regions of Gujarat," Land Use Policy, Elsevier, vol. 86(C), pages 253-260.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayanath Ananda & Mohamed Aheeyar, 2020. "An evaluation of groundwater institutions in India: a property rights perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5731-5749, August.
    2. Sidhu, Balsher Singh & Kandlikar, Milind & Ramankutty, Navin, 2020. "Power tariffs for groundwater irrigation in India: A comparative analysis of the environmental, equity, and economic tradeoffs," World Development, Elsevier, vol. 128(C).
    3. Glendenning, C.J. & Vervoort, R.W., 2010. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India. Part 1: Field-scale impacts," Agricultural Water Management, Elsevier, vol. 98(2), pages 331-342, December.
    4. Ray, Sudatta, 2020. "Beyond Lights: The Changing Impact of Rural Electrification on Indian Agriculture," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304223, Agricultural and Applied Economics Association.
    5. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    6. Glendenning, C.J. & Vervoort, R.W., 2011. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India: Part 2. Catchment-scale impacts," Agricultural Water Management, Elsevier, vol. 98(4), pages 715-730, February.
    7. Kumar, M. Dinesh & van Dam, J. C., 2008. "Improving water productivity in agriculture in developing economies: in search of new avenues," IWMI Conference Proceedings 245276, International Water Management Institute.
    8. Lenouvel, Vincent & Montginoul, Marielle, 2010. "Groundwater Management Instruments in a Conjunctive Use System: Assessing the Impact on Farmers’ Income Using Mixed Integer Linear Programming (MILP)," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 59(3).
    9. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    10. Malik, R. P. S., 2009. "Energy regulations as a demand management option: potentials, problems and prospects," IWMI Books, Reports H042161, International Water Management Institute.
    11. Lenouvel, Vincent & Montginoul, Marielle, 2010. "Groundwater Management Instruments in a Conjunctive Use System: Assessing the Impact on Farmers’ Income Using Mixed Integer Linear Programming (MILP)," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 59(03), pages 1-15, September.
    12. Shah, Tushaar & Verma, Shilp, 2008. "Real-time co-management of electricity and groundwater: an assessment of Gujarat’s pioneering Jyotirgram Scheme," IWMI Conference Proceedings 235174, International Water Management Institute.
    13. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," Book Chapters,, International Water Management Institute.
    14. Kumar, M. Dinesh, 2009. "Opportunities and constraints to improving water productivity in India," IWMI Books, Reports H042640, International Water Management Institute.
    15. CGIAR Research Program on Water, Land and Ecosystems, 2015. "Groundwater and ecosystem services: a framework for managing smallholder groundwater-dependent agrarian socio-ecologies - applying an ecosystem services and resilience approach," IWMI Books, International Water Management Institute, number 208414.
    16. Malik, A. K. & Junaid, M. & Tiwari, Rakesh & Kumar, M. Dinesh, 2008. "Towards evolving groundwater rights: the case of shared well irrigation in Punjab," Conference Papers h041885, International Water Management Institute.
    17. Kumar, M. Dinesh & van Dam, Jos C., 2009. "Improving water productivity in agriculture in India: beyond ‘more crop per drop’," Book Chapters,, International Water Management Institute.
    18. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    19. Muthukumar Perumal & Selvam Sekar & Paula C. S. Carvalho, 2024. "Global Investigations of Seawater Intrusion (SWI) in Coastal Groundwaters in the Last Two Decades (2000–2020): A Bibliometric Analysis," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    20. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:iimkoz:v:5:y:2016:i:1:p:51-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.