IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v28y2017i5-6p544-563.html
   My bibliography  Save this article

A strategy for the photovoltaic-powered pumped storage hydroelectricity

Author

Listed:
  • Jakub Jurasz
  • Jerzy Mikulik

Abstract

Pumped storage hydroelectricity is the most natural and almost the only bulk energy storage technology available today. Due to the variability of energy demand, and recently also of the supply side of the energy market, there is a need to compensate these differences. In market reality this is usually done on the so-called balancing market where energy prices are significantly higher than on the power exchange market. In this paper we introduce a mathematical model for simulating the operation of photovoltaic-powered pumped storage hydroelectricity along with an optimization model and a procedure for operation on the balancing market. A simulation was performed based on data covering the year 2015 with an hourly time step. The results from the proposed approach were juxtaposed with an optimal solution generated from the optimization model.

Suggested Citation

  • Jakub Jurasz & Jerzy Mikulik, 2017. "A strategy for the photovoltaic-powered pumped storage hydroelectricity," Energy & Environment, , vol. 28(5-6), pages 544-563, September.
  • Handle: RePEc:sae:engenv:v:28:y:2017:i:5-6:p:544-563
    DOI: 10.1177/0958305X17714174
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X17714174
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X17714174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hedegaard, K. & Meibom, P., 2012. "Wind power impacts and electricity storage – A time scale perspective," Renewable Energy, Elsevier, vol. 37(1), pages 318-324.
    2. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    3. Hessami, Mir-Akbar & Bowly, David R., 2011. "Economic feasibility and optimisation of an energy storage system for Portland Wind Farm (Victoria, Australia)," Applied Energy, Elsevier, vol. 88(8), pages 2755-2763, August.
    4. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    5. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    6. Andrew J Mason, 2012. "OpenSolver - An Open Source Add-in to Solve Linear and Integer Progammes in Excel," Operations Research Proceedings, in: Diethard Klatte & Hans-Jakob Lüthi & Karl Schmedders (ed.), Operations Research Proceedings 2011, edition 127, pages 401-406, Springer.
    7. Hoicka, Christina E. & Rowlands, Ian H., 2011. "Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada," Renewable Energy, Elsevier, vol. 36(1), pages 97-107.
    8. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    9. Kevin E. Trenberth & Aiguo Dai & Gerard van der Schrier & Philip D. Jones & Jonathan Barichivich & Keith R. Briffa & Justin Sheffield, 2014. "Global warming and changes in drought," Nature Climate Change, Nature, vol. 4(1), pages 17-22, January.
    10. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    11. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    12. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    13. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    14. Talavera, D.L. & Pérez-Higueras, P. & Ruíz-Arias, J.A. & Fernández, E.F., 2015. "Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain," Applied Energy, Elsevier, vol. 151(C), pages 49-59.
    15. Varkani, Ali Karimi & Daraeepour, Ali & Monsef, Hassan, 2011. "A new self-scheduling strategy for integrated operation of wind and pumped-storage power plants in power markets," Applied Energy, Elsevier, vol. 88(12), pages 5002-5012.
    16. Papaefthymiou, Stefanos V. & Papathanassiou, Stavros A., 2014. "Optimum sizing of wind-pumped-storage hybrid power stations in island systems," Renewable Energy, Elsevier, vol. 64(C), pages 187-196.
    17. Bizon, Nicu & Radut, Marin & Oproescu, Mihai, 2015. "Energy control strategies for the Fuel Cell Hybrid Power Source under unknown load profile," Energy, Elsevier, vol. 86(C), pages 31-41.
    18. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    19. Vaz, A.G.R. & Elsinga, B. & van Sark, W.G.J.H.M. & Brito, M.C., 2016. "An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands," Renewable Energy, Elsevier, vol. 85(C), pages 631-641.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    2. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    3. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Jurasz & Alexander Kies, 2018. "Day-Ahead Probabilistic Model for Scheduling the Operation of a Wind Pumped-Storage Hybrid Power Station: Overcoming Forecasting Errors to Ensure Reliability of Supply to the Grid," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
    2. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    4. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    5. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    6. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    7. Zubi, Ghassan, 2011. "Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain," Energy Policy, Elsevier, vol. 39(12), pages 8070-8077.
    8. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    9. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    11. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    12. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    13. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    14. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    15. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    16. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
    17. Xianxun Wang & Lihua Chen & Qijuan Chen & Yadong Mei & Hao Wang, 2018. "Model and Analysis of Integrating Wind and PV Power in Remote and Core Areas with Small Hydropower and Pumped Hydropower Storage," Energies, MDPI, vol. 11(12), pages 1-24, December.
    18. dos Anjos, Priscilla Sales & da Silva, Antonio Samuel Alves & Stošić, Borko & Stošić, Tatijana, 2015. "Long-term correlations and cross-correlations in wind speed and solar radiation temporal series from Fernando de Noronha Island, Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 90-96.
    19. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    20. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:28:y:2017:i:5-6:p:544-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.