IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v31y2010i2p145-172.html
   My bibliography  Save this article

Climate Policy and the Long-Term Evolution of the U.S. Buildings Sector

Author

Listed:
  • Page Kyle
  • Leon Clarke
  • Fang Rong
  • Steven J. Smith

Abstract

No abstract is available for this item.

Suggested Citation

  • Page Kyle & Leon Clarke & Fang Rong & Steven J. Smith, 2010. "Climate Policy and the Long-Term Evolution of the U.S. Buildings Sector," The Energy Journal, , vol. 31(2), pages 145-172, April.
  • Handle: RePEc:sae:enejou:v:31:y:2010:i:2:p:145-172
    DOI: 10.5547/ISSN0195-6574-EJ-Vol31-No2-6
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol31-No2-6
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol31-No2-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edmonds, Jae & Clarke, John & Dooley, James & Kim, Son H. & Smith, Steven J., 2004. "Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies," Energy Economics, Elsevier, vol. 26(4), pages 517-537, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Page Kyle & Leon Clarke & Steven J. Smith & Son Kim & Mayda Nathan & Marshall Wise, 2011. "The Value of Advanced End-Use Energy Technologies in Meeting U.S. Climate Policy Goals," The Energy Journal, , vol. 32(1_suppl), pages 61-88, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2008. "Energy substitutions, climate change and carbon sinks," Ecological Economics, Elsevier, vol. 67(4), pages 589-597, November.
    2. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    3. Pierre-André Jouvet & Marie Renner, 2014. "Social Acceptance and Optimal Pollution: CCS or Tax?," Post-Print hal-01385960, HAL.
    4. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    5. Yuyu Zhou & Jiyong Eom & Leon Clarke, 2013. "The effect of global climate change, population distribution, and climate mitigation on building energy use in the U.S. and China," Climatic Change, Springer, vol. 119(3), pages 979-992, August.
    6. Ghaboulian Zare, Sara & Amirmoeini, Kamyar & Bahn, Olivier & Baker, Ryan C. & Mousseau, Normand & Neshat, Najmeh & Trépanier, Martin & Wang, Qianpu, 2025. "The role of hydrogen in integrated assessment models: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    7. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E., 2016. "Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?," Energy Policy, Elsevier, vol. 98(C), pages 400-411.
    8. Peters, Jeffrey C. & Hertel, Thomas W., 2016. "The database–modeling nexus in integrated assessment modeling of electric power generation," Energy Economics, Elsevier, vol. 56(C), pages 107-116.
    9. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO 2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, September.
    10. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    11. Kohko Tokushige & Keigo Akimoto & Toshimasa Tomoda, 2007. "Public acceptance and risk-benefit perception of CO 2 geological storage for global warming mitigation in Japan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1237-1251, August.
    12. Ayong Le Kama, Alain & Fodha, Mouez & Lafforgue, Gilles, 2009. "Optimal Carbon Capture and Storage Policies," TSE Working Papers 09-095, Toulouse School of Economics (TSE).
    13. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    14. James Edmonds, 2004. "Climate Change and Energy Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 391-416, October.
    15. P. Shukla & Ashish Rana & Amit Garg & Manmohan Kapshe & Rajesh Nair, 2006. "Global climate change stabilization regimes and Indian emission scenarios: Lessons for modeling of developing country transitions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 205-231, September.
    16. repec:dau:papers:123456789/12981 is not listed on IDEAS
    17. van Ruijven, Bas & Hari, Lakshmikanth & van Vuuren, Detlef P. & de Vries, Bert, 2008. "The potential role of hydrogen energy in India and Western Europe," Energy Policy, Elsevier, vol. 36(5), pages 1649-1665, May.
    18. Iyer, Gokul & Hultman, Nathan & Fetter, Steve & Kim, Son H., 2014. "Implications of small modular reactors for climate change mitigation," Energy Economics, Elsevier, vol. 45(C), pages 144-154.
    19. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2011. "Optimal CCS and air capture from heterogeneous energy consuming sectors," LERNA Working Papers 11.16.350, LERNA, University of Toulouse.
    20. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    21. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:31:y:2010:i:2:p:145-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.