IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v7y2006i3d10.1007_bf03353999.html

Electrification of the economy and CO2 emissions mitigation

Author

Listed:
  • Jae Edmonds

    (Joint Global Change Research Institute at the University of Maryland)

  • Tom Wilson

    (Electric Power Research Institute (EPRI))

  • Marshall Wise

    (Joint Global Change Research Institute at the University of Maryland)

  • John Weyant

    (Terman Engineering Center)

Abstract

In this article, the ratio of central station electricity to final energy is used as a measure of electrification. It is well known that this ratio tends to increase with gross domestic product. We show that not only is electrification a characteristic of a reference case with economic growth, but that it is significantly accelerated by a general limitation on carbon emissions. That is, limits on CO2 concentrations, implemented efficiently across the whole economy, result in a higher ratio of electricity to total final energy use. This result reflects the relatively greater suite of options available in reducing CO2 emissions in power generation than in other important components of the economy. Furthermore, electrification is stronger, the more stringent the constraint on CO2 emissions, although the absolute production of electricity may be either greater or smaller in the presence of a CO2 constraint, depending on the technologies available to the sector and to end-use sectors. The base technology scenario we examined was purposefully pessimistic about the evolution of central station and distributed electric technologies, lessening the degree of electrification. The better the performance of the set of options for emissions mitigation in power generation, the greater the acceleration of electrification.

Suggested Citation

  • Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, January.
  • Handle: RePEc:spr:envpol:v:7:y:2006:i:3:d:10.1007_bf03353999
    DOI: 10.1007/BF03353999
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF03353999
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF03353999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    2. Edmonds, Jae & Clarke, John & Dooley, James & Kim, Son H. & Smith, Steven J., 2004. "Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies," Energy Economics, Elsevier, vol. 26(4), pages 517-537, July.
    3. Atsushi Kurosawa & Hiroshi Yagita & Weisheng Zhou & Koji Tokimatsu & Yukio Yanagisawa, 1999. "Analysis of Carbon Emission Stabilization Targets and Adaptation by Integrated Assessment Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 157-175.
    4. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, December.
    5. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    6. Hulme, Mike & Raper, Sarah CB & Wigley, Tom ML, 1995. "An integrated framework to address climate change (ESCAPE) and further developments of the global and regional climate modules (MAGICC)," Energy Policy, Elsevier, vol. 23(4-5), pages 347-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryan K. Mignone & Leon Clarke & James A. Edmonds & Angelo Gurgel & Howard J. Herzog & Jeremiah X. Johnson & Dharik S. Mallapragada & Haewon McJeon & Jennifer Morris & Patrick R. O’Rourke & Sergey Pal, 2024. "Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO 2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, September.
    2. Hiromi Yamamoto & Masahiro Sugiyama & Junichi Tsutsui, 2014. "Role of end-use technologies in long-term GHG reduction scenarios developed with the BET model," Climatic Change, Springer, vol. 123(3), pages 583-596, April.
    3. Marc Vielle & Alain L. Bernard, 1998. "Un exemple d'utilisation : le coût de politiques de réduction des gaz à effet de serre," Économie et Prévision, Programme National Persée, vol. 136(5), pages 33-48.
    4. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    5. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    6. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    7. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    8. Tol, Richard S. J., 1998. "Short-term decisions under long-term uncertainty," Energy Economics, Elsevier, vol. 20(5-6), pages 557-569, December.
    9. Kram, Tom & Hill, Douglas, 1996. "A multinational model for CO2 reduction : Defining boundaries of future CO2 emissions in nine countries," Energy Policy, Elsevier, vol. 24(1), pages 39-51, January.
    10. Kelly, David L & Kolstad, Charles D, 2001. "Solving Infinite Horizon Growth Models with an Environmental Sector," Computational Economics, Springer;Society for Computational Economics, vol. 18(2), pages 217-231, October.
    11. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
    12. Ghaboulian Zare, Sara & Amirmoeini, Kamyar & Bahn, Olivier & Baker, Ryan C. & Mousseau, Normand & Neshat, Najmeh & Trépanier, Martin & Wang, Qianpu, 2025. "The role of hydrogen in integrated assessment models: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    13. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    14. Kosugi, Takanobu & Tokimatsu, Koji & Kurosawa, Atsushi & Itsubo, Norihiro & Yagita, Hiroshi & Sakagami, Masaji, 2009. "Internalization of the external costs of global environmental damage in an integrated assessment model," Energy Policy, Elsevier, vol. 37(7), pages 2664-2678, July.
    15. Aneli Bongers & Jose L. Torres, 2025. "On the Social Cost of Orbital Debris," Space Economics Working Papers 04-2025, Institute for Space Economics, revised Mar 2025.
    16. Durand-Lasserve, Olivier & Almutairi, Hossa & Aljarboua, Abdullah & Pierru, Axel & Pradhan, Shreekar & Murphy, Frederic, 2023. "Hard-linking a top-down economic model with a bottom-up energy system for an oil-exporting country with price controls," Energy, Elsevier, vol. 266(C).
    17. Nihal KARALI & Kemal SARICA, 2008. "Diffusion Potential of New Energy Efficient Technologies Under an Uncertain Environment," EcoMod2008 23800057, EcoMod.
    18. Bohringer, Christoph & Loschel, Andreas & Rutherford, Thomas F., 2007. "Decomposing the integrated assessment of climate change," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 683-702, February.
    19. Wilkerson, Jordan T. & Leibowicz, Benjamin D. & Turner, Delavane D. & Weyant, John P., 2015. "Comparison of integrated assessment models: Carbon price impacts on U.S. energy," Energy Policy, Elsevier, vol. 76(C), pages 18-31.
    20. Yunfa Zhu and Madanmohan Ghosh, 2014. "Impacts of Technology Uncertainty on Energy Use, Emission and Abatement Cost in USA: Simulation results from Environment Canada's Integrated Assessment Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:7:y:2006:i:3:d:10.1007_bf03353999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.