IDEAS home Printed from https://ideas.repec.org/a/rsr/journl/v64y2016i2p101-117.html
   My bibliography  Save this article

Data Editing for Complex Surveys in Presence Of Administrative Data: An Application to Fss 2013 Livestock Survey Data Based on The Joint Sequential Use Of Different R Packages

Author

Listed:
  • Elena Catanese

    (Italian National Institute of Statistics (Istat))

Abstract

Data editing and imputation (E&I) in complex sample business surveys is a task which is usually split into two steps to gain efficiency in terms of time and human resources: first selective editing techniques are applied to the primary target estimates variables in order to identify a potential set of influential errors that require usually manual editing and a second part of automatic identification and imputation of inconsistencies and missing values. Within this framework, the present paper reviews the Italian top-down data editing strategy adopted and automated imputation showing the experience applied to 2013 Farm Structure Survey livestock data.In this edition this process has been entirely carried out in the R environment by means of different R packages.

Suggested Citation

  • Elena Catanese, 2016. "Data Editing for Complex Surveys in Presence Of Administrative Data: An Application to Fss 2013 Livestock Survey Data Based on The Joint Sequential Use Of Different R Packages," Romanian Statistical Review, Romanian Statistical Review, vol. 64(2), pages 101-117, June.
  • Handle: RePEc:rsr:journl:v:64:y:2016:i:2:p:101-117
    as

    Download full text from publisher

    File URL: http://www.revistadestatistica.ro/wp-content/uploads/2016/06/RRS2_2016_A09.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hron, K. & Templ, M. & Filzmoser, P., 2010. "Imputation of missing values for compositional data using classical and robust methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3095-3107, December.
    2. Matthias Templ & Andreas Alfons & Peter Filzmoser, 2012. "Exploring incomplete data using visualization techniques," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 29-47, April.
    3. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Templ & K. Hron & P. Filzmoser, 2017. "Exploratory tools for outlier detection in compositional data with structural zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 734-752, March.
    2. Raymundo M. Campos-Vázquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
    3. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    4. Paul T. von Hippel, 2013. "Should a Normal Imputation Model be Modified to Impute Skewed Variables?," Sociological Methods & Research, , vol. 42(1), pages 105-138, February.
    5. Siedschlag Iulia & Kaitila Ville & McQuinn John & Zhang Xiaoheng, 2014. "International Investment and Firm Performance: Empirical Evidence from Small Open Economies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(6), pages 662-687, December.
    6. Miller, Elizabeth A. & Paschall, Katherine W. & Azar, Sandra T., 2017. "Latent classes of older foster youth: Prospective associations with outcomes and exits from the foster care system during the transition to adulthood," Children and Youth Services Review, Elsevier, vol. 79(C), pages 495-505.
    7. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    8. Nancy, Jane Y. & Khanna, Nehemiah H. & Arputharaj, Kannan, 2017. "Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 63-79.
    9. Thomas Masterson & Kijong Kim & Fernando Rios-Avila, 2016. "Simulations of Employment for Individuals in LIMTCP Consumption-poor Households in Tanzania and Ghana, 2012," Economics Working Paper Archive wp_871, Levy Economics Institute.
    10. McDonough, Ian K. & Millimet, Daniel L., 2017. "Missing data, imputation, and endogeneity," Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
    11. Hamrick, Karen S., 2012. "Nonresponse Bias Analysis of Body Mass Index in the Eating and Health Module," Technical Bulletins 184303, United States Department of Agriculture, Economic Research Service.
    12. Lingyun Lyu & Yu Cheng & Abdus S. Wahed, 2023. "Imputation‐based Q‐learning for optimizing dynamic treatment regimes with right‐censored survival outcome," Biometrics, The International Biometric Society, vol. 79(4), pages 3676-3689, December.
    13. Yijie Xue & Nicole Lazar, 2012. "Empirical likelihood-based hot deck imputation methods," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 629-646.
    14. Marcello D’Orazio, 2015. "Integration and imputation of survey data in R: the StatMatch package," Romanian Statistical Review, Romanian Statistical Review, vol. 63(2), pages 57-68, June.
    15. Zhong, Hua & Hu, Wuyang, 2015. "Farmers’ Willingness to Engage in Best Management Practices: an Application of Multiple Imputation," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196962, Southern Agricultural Economics Association.
    16. Thomas Masterson, 2014. "Quality of Statistical Match and Employment Simulations Used in the Estimation of the Levy Institute Measure of Time and Income Poverty (LIMTIP) for South Korea, 2009," Economics Working Paper Archive wp_793, Levy Economics Institute.
    17. Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
    18. Młodak Andrzej, 2021. "An application of a complex measure to model–based imputation in business statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 1-28, March.
    19. Thomas Masterson, 2012. "Simulations of Full-Time Employment and Household Work in the Levy Institute Measure of Time and Income Poverty (LIMTIP) for Argentina, Chile, and Mexico," Economics Working Paper Archive wp_727, Levy Economics Institute.
    20. Chiara Elena Dalla & Menon Martina & Perali Federico, 2019. "An Integrated Database to Measure Living Standards," Journal of Official Statistics, Sciendo, vol. 35(3), pages 531-576, September.

    More about this item

    Keywords

    Selective editing; data editing; Business Surveys; Automated Edit Rules; Imputation of Missing Values; Compositional Data; Random vs. Systematic Errors; Influential non Influential Errors; Statistical software R;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsr:journl:v:64:y:2016:i:2:p:101-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adrian Visoiu (email available below). General contact details of provider: https://edirc.repec.org/data/stagvro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.