Exploring incomplete data using visualization techniques
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-011-0102-y
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Theus, Martin, 2002. "Interactive Data Visualization using Mondrian," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i11).
- Julie Josse & Jérôme Pagès & François Husson, 2011. "Multiple imputation in principal component analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(3), pages 231-246, October.
- Zeileis, Achim & Hornik, Kurt & Murrell, Paul, 2009. "Escaping RGBland: Selecting colors for statistical graphics," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3259-3270, July.
- Domenico Perrotta & Marco Riani & Francesca Torti, 2009. "New robust dynamic plots for regression mixture detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 263-279, December.
- Hofmann, Heike, 2003. "Constructing and reading mosaicplots," Computational Statistics & Data Analysis, Elsevier, vol. 43(4), pages 565-580, August.
- Swayne, Deborah F. & Lang, Duncan Temple & Buja, Andreas & Cook, Dianne, 2003. "GGobi: evolving from XGobi into an extensible framework for interactive data visualization," Computational Statistics & Data Analysis, Elsevier, vol. 43(4), pages 423-444, August.
- Hron, K. & Templ, M. & Filzmoser, P., 2010. "Imputation of missing values for compositional data using classical and robust methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3095-3107, December.
- Valentin Todorov & Matthias Templ & Peter Filzmoser, 2011. "Detection of multivariate outliers in business survey data with incomplete information," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(1), pages 37-56, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
- M. Templ & K. Hron & P. Filzmoser, 2017. "Exploratory tools for outlier detection in compositional data with structural zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 734-752, March.
- Alfons, Andreas & Templ, Matthias, 2013. "Estimation of Social Exclusion Indicators from Complex Surveys: The R Package laeken," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i15).
- Elena Catanese, 2016. "Data Editing for Complex Surveys in Presence Of Administrative Data: An Application to Fss 2013 Livestock Survey Data Based on The Joint Sequential Use Of Different R Packages," Romanian Statistical Review, Romanian Statistical Review, vol. 64(2), pages 101-117, June.
- Juana Sanchez & Sydney Noelle Kahmann, 2017. "R&D, Attrition and Multiple Imputation in BRDIS," Working Papers 17-13, Center for Economic Studies, U.S. Census Bureau.
- Matthias Templ & Alexander Kowarik & Bernhard Meindl, 2014. "Development and Current Practice in Using R at Statistics Austria," Romanian Statistical Review, Romanian Statistical Review, vol. 62(2), pages 173-184, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M. Templ & K. Hron & P. Filzmoser, 2017. "Exploratory tools for outlier detection in compositional data with structural zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 734-752, March.
- Ben Jann, 2022. "ColrSpace: A Mata class for color management," University of Bern Social Sciences Working Papers 42, University of Bern, Department of Social Sciences, revised 03 Jun 2022.
- Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
- Atkinson, Anthony C. & Riani, Marco & Corbellini, Aldo, 2021. "The box-cox transformation: review and extensions," LSE Research Online Documents on Economics 103537, London School of Economics and Political Science, LSE Library.
- Giovanni C. Porzio & Giancarlo Ragozini & Domenico Vistocco, 2008. "On the use of archetypes as benchmarks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 419-437, September.
- K. Hron & P. Filzmoser & K. Thompson, 2012. "Linear regression with compositional explanatory variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1115-1128, November.
- Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2023.
"Automatic robust Box–Cox and extended Yeo–Johnson transformations in regression,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 75-102, March.
- Riani, Marco & Atkinson, Anthony C. & Corbellini, Aldo, 2023. "Automatic robust Box-Cox and extended Yeo-Johnson transformations in regression," LSE Research Online Documents on Economics 114903, London School of Economics and Political Science, LSE Library.
- Anette Fasang & Marcel Raab, 2014. "Beyond Transmission: Intergenerational Patterns of Family Formation Among Middle-Class American Families," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1703-1728, October.
- L. A. García‐Escudero & A. Gordaliza & R. San Martín & S. Van Aelst & R. Zamar, 2009. "Robust linear clustering," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 301-318, January.
- Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Simon Urbanek, 2011. "iPlots eXtreme: next-generation interactive graphics design and implementation of modern interactive graphics," Computational Statistics, Springer, vol. 26(3), pages 381-393, September.
- Torti, Francesca & Corbellini, Aldo & Atkinson, Anthony C., 2021. "fsdaSAS: a package for robust regression for very large datasets including the batch forward search," LSE Research Online Documents on Economics 109895, London School of Economics and Political Science, LSE Library.
- C. Hurley & R. Oldford, 2011. "Eulerian tour algorithms for data visualization and the PairViz package," Computational Statistics, Springer, vol. 26(4), pages 613-633, December.
- Stanislav Katina & Liberty Vittert & Adrian W. Bowman, 2021. "Functional data analysis and visualisation of three‐dimensional surface shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 691-713, June.
- repec:jss:jstsof:32:i01 is not listed on IDEAS
- Mark A. Engle & Charles W. Nye & Ghanashyam Neupane & Scott A. Quillinan & Jonathan Fred McLaughlin & Travis McLing & Josep A. Martín-Fernández, 2022. "Predicting Rare Earth Element Potential in Produced and Geothermal Waters of the United States via Emergent Self-Organizing Maps," Energies, MDPI, vol. 15(13), pages 1-21, June.
- repec:jss:jstsof:08:i11 is not listed on IDEAS
- repec:jss:jstsof:40:i02 is not listed on IDEAS
- Nadia Solaro & Alessandro Barbiero & Giancarlo Manzi & Pier Alda Ferrari, 2017. "A sequential distance-based approach for imputing missing data: Forward Imputation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 395-414, June.
- Peter Filzmoser & Karel Hron & Matthias Templ, 2012. "Discriminant analysis for compositional data and robust parameter estimation," Computational Statistics, Springer, vol. 27(4), pages 585-604, December.
- Jonas Schöley, 2021. "The centered ternary balance scheme: A technique to visualize surfaces of unbalanced three-part compositions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(19), pages 443-458.
- repec:jss:jstsof:25:i09 is not listed on IDEAS
- Shannon P McPherron, 2018. "Additional statistical and graphical methods for analyzing site formation processes using artifact orientations," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-21, January.
- Kumasaka, Natsuhiko & Shibata, Ritei, 2008. "High-dimensional data visualisation: The textile plot," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3616-3644, March.
More about this item
Keywords
; ; ; ; ; ; ;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:6:y:2012:i:1:p:29-47. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/advdac/v6y2012i1p29-47.html