IDEAS home Printed from https://ideas.repec.org/p/cen/wpaper/17-13.html
   My bibliography  Save this paper

R&D, Attrition and Multiple Imputation in BRDIS

Author

Listed:
  • Juana Sanchez
  • Sydney Noelle Kahmann

Abstract

Multiple imputation in business establishment surveys like BRDIS, an annual business survey in which some companies are sampled every year or multiple years, may enhance the estimates of total R&D in addition to helping researchers estimate models with subpopulations of small sample size. Considering a panel of BRDIS companies throughout the years 2008 to 2013 linked to LBD data, this paper uses the conclusions obtained with missing data visualization and other explorations to come up with a strategy to conduct multiple imputation appropriate to address the item nonresponse in R&D expenditures. Because survey design characteristics are behind much of the item and unit nonresponse, multiple imputation of missing data in BRDIS changes the estimates of total R&D significantly and alters the conclusions reached by models of the determinants of R&D investment obtained with complete case analysis.

Suggested Citation

  • Juana Sanchez & Sydney Noelle Kahmann, 2017. "R&D, Attrition and Multiple Imputation in BRDIS," Working Papers 17-13, Center for Economic Studies, U.S. Census Bureau.
  • Handle: RePEc:cen:wpaper:17-13
    as

    Download full text from publisher

    File URL: https://www2.census.gov/ces/wp/2017/CES-WP-17-13.pdf
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. Robbins & Sujit K. Ghosh & Joshua D. Habiger, 2013. "Imputation in High-Dimensional Economic Data as Applied to the Agricultural Resource Management Survey," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 81-95, March.
    2. Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
    3. David A. Penn, 2007. "Estimating Missing Values from the General Social Survey: An Application of Multiple Imputation," Social Science Quarterly, Southwestern Social Science Association, vol. 88(2), pages 573-584, June.
    4. T. Kirk White & Jerome P. Reiter & Amil Petrin, 2018. "Imputation in U.S. Manufacturing Data and Its Implications for Productivity Dispersion," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 502-509, July.
    5. Matthias Templ & Andreas Alfons & Peter Filzmoser, 2012. "Exploring incomplete data using visualization techniques," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 29-47, April.
    6. Honaker, James & King, Gary & Blackwell, Matthew, 2011. "Amelia II: A Program for Missing Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i07).
    7. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    8. T. Kirk White & Jerome P. Reiter & Amil Petrin, 2011. "Plant-Level Productivity and Imputation of Missing Data in the Census of Manufactures," Working Papers 11-02, Center for Economic Studies, U.S. Census Bureau.
    9. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    10. Schenker, Nathaniel & Raghunathan, Trivellore E. & Chiu, Pei-Lu & Makuc, Diane M. & Zhang, Guangyu & Cohen, Alan J., 2006. "Multiple Imputation of Missing Income Data in the National Health Interview Survey," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 924-933, September.
    11. Lucia Foster & Cheryl Grim & Nikolas Zolas, 2020. "A portrait of U.S. firms that invest in R&D," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 29(1), pages 89-111, January.
    12. Jörg Drechsler, 2011. "Multiple imputation in practice—a case study using a complex German establishment survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 1-26, March.
    13. Lucia Foster & Cheryl Grim, 2010. "Characteristics of the Top R&D Performing Firms in the U.S.: Evidence from the Survey of Industrial R&D," Working Papers 10-33, Center for Economic Studies, U.S. Census Bureau.
    14. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    15. Lawrence R. Landerman & Kenneth C. Land & Carl F. Pieper, 1997. "An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values," Sociological Methods & Research, , vol. 26(1), pages 3-33, August.
    16. Yongwei Chen & Dahai Fu, 2015. "Measuring income inequality using survey data: the case of China," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 13(2), pages 299-307, June.
    17. Ron S Jarmin & Javier Miranda, 2002. "The Longitudinal Business Database," Working Papers 02-17, Center for Economic Studies, U.S. Census Bureau.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eisele, Martin & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," EconStor Preprints 100007, ZBW - Leibniz Information Centre for Economics.
    2. Christian Aßmann & Ariane Würbach & Solange Goßmann & Ferdinand Geissler & Anika Bela, 2017. "Nonparametric Multiple Imputation for Questionnaires with Individual Skip Patterns and Constraints: The Case of Income Imputation in the National Educational Panel Study," Sociological Methods & Research, , vol. 46(4), pages 864-897, November.
    3. Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
    4. Nathan Goldschlag & Elisabeth Perlman, 2017. "Business Dynamic Statistics of Innovative Firms," Working Papers 17-72, Center for Economic Studies, U.S. Census Bureau.
    5. Kristian Kleinke & Jost Reinecke, 2013. "Multiple imputation of incomplete zero-inflated count data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 311-336, August.
    6. Morehart, Mitch & Milkove, Dan & Xu, Yang, 2014. "Multivariate Farm Debt Imputation in the Agricultural Resource Management Survey (ARMS)," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169401, Agricultural and Applied Economics Association.
    7. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    8. Valaei, Naser & Rezaei, Sajad & Ismail, Wan Khairuzzaman Wan, 2017. "Examining learning strategies, creativity, and innovation at SMEs using fuzzy set Qualitative Comparative Analysis and PLS path modeling," Journal of Business Research, Elsevier, vol. 70(C), pages 224-233.
    9. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    10. Renate S M Buisman & Katharina Pittner & Marieke S Tollenaar & Jolanda Lindenberg & Lisa J M van den Berg & Laura H C G Compier-de Block & Joost R van Ginkel & Lenneke R A Alink & Marian J Bakermans-K, 2020. "Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    11. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
    12. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    13. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    14. Marco Di Zio & Ugo Guarnera & Roberta Varriale, 2016. "Estimation of the main variables of the economic account of small and medium enterprises based on administrative sources," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 18(1), pages 71-81.
    15. Giuseppe Arbia & Giuseppe Espa & Diego Giuliani, 2016. "Dirty spatial econometrics," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 177-189, January.
    16. Brad R. Humphreys & Yang Seung Lee & Brian P. Soebbing, 2010. "Consumer behaviour in lottery: the double hurdle approach and zeros in gambling survey data," International Gambling Studies, Taylor & Francis Journals, vol. 10(2), pages 165-176, August.
    17. World Bank & Organisation for Economic Co-operation and Development, 2017. "A Step Ahead," World Bank Publications - Books, The World Bank Group, number 27527, April.
    18. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    19. Stockdale, Susan E. & Wells, Kenneth B. & Tang, Lingqi & Belin, Thomas R. & Zhang, Lily & Sherbourne, Cathy D., 2007. "The importance of social context: Neighborhood stressors, stress-buffering mechanisms, and alcohol, drug, and mental health disorders," Social Science & Medicine, Elsevier, vol. 65(9), pages 1867-1881, November.
    20. Lucia Foster & Cheryl Grim & Nikolas Zolas, 2020. "A portrait of U.S. firms that invest in R&D," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 29(1), pages 89-111, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:17-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dawn Anderson (email available below). General contact details of provider: https://edirc.repec.org/data/cesgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.